Answer:
Step-by-step explanation:
Given two upward facing parabolas with equations

The two intersect at


=
x=
area enclosed by them is given by
A=![\int_{-\sqrt{\frac{2}{5}}}^{\sqrt{\frac{2}{5}}}\left [ \left ( x^2+2\right )-\left ( 6x^2\right ) \right ]dx](https://tex.z-dn.net/?f=%5Cint_%7B-%5Csqrt%7B%5Cfrac%7B2%7D%7B5%7D%7D%7D%5E%7B%5Csqrt%7B%5Cfrac%7B2%7D%7B5%7D%7D%7D%5Cleft%20%5B%20%5Cleft%20%28%20x%5E2%2B2%5Cright%20%29-%5Cleft%20%28%206x%5E2%5Cright%20%29%20%5Cright%20%5Ddx)
A=
A=
A=
The circumference is (2 pi) (radius) . The ratio of radius to circumference is (1)/(2 pi).
Answer:
No positive value of n
Step-by-step explanation:
we have to find out for how many positive values of n are both
our-digit integers
Let us consider first cube
we get 4digit lowest number is 1000 and it has cube root as 10.
Thus 10 is the least integer which satisfies four digits for cube.
The highest integer is 9999 and it has cube root as 21.54
or 21 the highest integer.
Considering 3^n we get,
3^10 is having 5 digits and also 3^21
Thus there is no positive value of n which satisfy that both n cube and 3 power n are four digits.
Its A. x=4
procedure: 3*equation1 - 2*equation2 ⇒ x=4
A= 30
Explanation: 88-58=30