If we assume the given segments are those from the vertices to the point of intersection of the diagonals, it seems one diagonal (SW) is 20 yards long and the other (TR) is 44 yards long. The area (A) of the kite is half the product of the diagonals:
... A = (1/2)·SW·TR = (1/2)·(20 yd)·(44 yd)
... A = 440 yd²
The first one would be x^12
Answer:
The answer is option C
Step-by-step explanation:
sin C = opposite / hypotenuse
the opposite is 40
the Hypotenuse is 50
so
sin C = 40/50 = 4/5
Hope this helps you
f
'
(
x
)
=
1
(
x
+
1
)
2
Explanation:
differentiating from first principles
f
'
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
f
'
(
x
)
=
lim
h
→
0
x
+
h
x
+
h
+
1
−
x
x
+
1
h
the aim now is to eliminate h from the denominator
f
'
(
x
)
=
lim
h
=0
(
x
+
h
)
(
x
+
1
)−
x
(
x
+
h
+
1)
h
(
x
+
1
)
(
x
+
h
+
1
)
f
'
(
x
)
=
lim
h
→
0
x
2
+
h
x
+
x
+
h
−
x
2
−
h
x
−
x
h
(
x
+
1
)
(
x+h
+
1
)
f
'
(
x
)
=
lim
h
→
0
h
1
h
1
(
x
+
1
)
(
x
+
h
+1
)
f
'
(
x
)
=
1
(
x
+
1
)
2
If those percentiles are the changes of the two contracts occurring, it would be <span>0.31 *0.64 = </span>0,1984