Should be 17 degrees F. Just add 22.1 to -5.1.
Answer:
Step-by-step explanation:
|3x+12|
one is as it is one is the negative value of it
3x + 12 - (3x + 12)
- 3x - 12
That is because both negative and positive values put in am absolute value become positive.
Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
-----------------------------------------------
Define x :
-----------------------------------------------
Let the width be x
Width = x
Length = 4x + 7
-----------------------------------------------
Formula :
-----------------------------------------------
Perimeter = 2 (Length + Width)
Perimeter = 74
2(4x + 7 + x) = 74 // sub length and width into the equation
2(5x + 7) = 74 // combine like terms
10x + 14 = 74 // Apply distributive property
10x = 60 // Take away 14 from both sides
x = 6 // Divide by 10 on both sides
-----------------------------------------------
Find Length and Width :
-----------------------------------------------
Width = x = 6mm
Length = 4x + 7 = 4(6) + 7 = 31mm
----------------------------------------------------------------------------------------------
Answer: The length is 31mm and its width 6mm.
----------------------------------------------------------------------------------------------
Answer:
2500
so first you have to 100x 10 then times 2.5
Step-by-step explanation: