Answer:
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Explanation:
given data
area = 3 ft by 3 ft
air density = 0.075 lbm/ft³
to find out
minimum electric power consumption of the fan motor
solution
we know that energy balance equation that is express as
E in - E out =
......................1
and at steady state
= 0
so we can say from equation 1
E in = E out
so
minimum power required is
E in = W = m
=
put here value
E in =
E in =
E in = 0.1437 Btu/s
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Answer:
If Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
Explanation:
Reynolds number is an important dimensionless parameter in fluid mechanics.
It is calculated as;

where;
ρ is density
v is velocity
d is diameter
μ is viscosity
All these parameters are important in calculating Reynolds number and understanding of fluid flow over an object.
In aerodynamics, the higher the Reynolds number, the lesser the viscosity plays a role in the flow around the airfoil. As Reynolds number increases, the boundary layer gets thinner, which results in a lower drag. Or simply put, if Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
To solve this problem it is necessary to apply the concepts related to density in relation to mass and volume for each of the states presented.
Density can be defined as

Where
m = Mass
V = Volume
For state one we know that




For state two we have to




Therefore the total change of mass would be



Therefore the mass of air that has entered to the tank is 6.02Kg
Answer:
a)We know that acceleration a=dv/dt
So dv/dt=kt^2
dv=kt^2dt
Integrating we get
v(t)=kt^3/3+C
Puttin t=0
-8=C
Putting t=2
8=8k/3-8
k=48/8
k=6