Answer: 33.35 minutes
Explanation:
A(t) = A(o) *(.5)^[t/(t1/2)]....equ1
Where
A(t) = geiger count after time t = 100
A(o) = initial geiger count = 400
(t1/2) = the half life of decay
t = time between geiger count = 66.7 minutes
Sub into equ 1
100=400(.5)^[66.7/(t1/2)
Equ becomes
.25= (.5)^[66.7/(t1/2)]
Take log of both sides
Log 0.25 = [66.7/(t1/2)] * log 0.5
66.7/(t1/2) = 2
(t1/2) = (66.7/2 ) = 33.35 minutes
Answer:
A) 0.03382 kg/s
B) 7.0372 Kw
C) 4.3982
D) 0.7396 kw
Explanation:
Given data:
Evaporator at 60 C
Space temperature = 25 C
power consumed by compressor = 1.6 kw
T1( evaporator temperature ) = 12°C
attached below is the detailed solution
Answer:
P=361.91 KN
Explanation:
given data:
brackets and head of the screw are made of material with T_fail=120 Mpa
safety factor is F.S=2.5
maximum value of force P=??
<em>solution:</em>
to find the shear stress
T_allow=T_fail/F.S
=120 Mpa/2.5
=48 Mpa
we know that,
V=P
<u>Area for shear head:</u>
A(head)=π×d×t
=π×0.04×0.075
=0.003×πm^2
<u>Area for plate:</u>
A(plate)=π×d×t
=π×0.08×0.03
=0.0024×πm^2
now we have to find shear stress for both head and plate
<u>For head:</u>
T_allow=V/A(head)
48 Mpa=P/0.003×π ..(V=P)
P =48 Mpa×0.003×π
=452.16 KN
<u>For plate:</u>
T_allow=V/A(plate)
48 Mpa=P/0.0024×π ..(V=P)
P =48 Mpa×0.0024×π
=361.91 KN
the boundary load is obtained as the minimum value of force P for all three cases. so the solution is
P=361.91 KN
note:
find the attached pic
Answer: precision
Explanation: Because accuracy is where you keep on getting it right but precision is where you get closer and closer