1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
3 years ago
12

2) X and Y are jointly continuous with joint pdf

Mathematics
1 answer:
Nady [450]3 years ago
8 0

From what I gather from your latest comments, the PDF is given to be

f_{X,Y}(x,y)=\begin{cases}cxy&\text{for }0\le x,y \le1\\0&\text{otherwise}\end{cases}

and in particular, <em>f(x, y)</em> = <em>cxy</em> over the unit square [0, 1]², meaning for 0 ≤ <em>x</em> ≤ 1 and 0 ≤ <em>y</em> ≤ 1. (As opposed to the unbounded domain, <em>x</em> ≤ 0 *and* <em>y</em> ≤ 1.)

(a) Find <em>c</em> such that <em>f</em> is a proper density function. This would require

\displaystyle\int_0^1\int_0^1 cxy\,\mathrm dx\,\mathrm dy=c\left(\int_0^1x\,\mathrm dx\right)\left(\int_0^1y\,\mathrm dy\right)=\frac c{2^2}=1\implies \boxed{c=4}

(b) Get the marginal density of <em>X</em> by integrating the joint density with respect to <em>y</em> :

f_X(x)=\displaystyle\int_0^1 4xy\,\mathrm dy=(2xy^2)\bigg|_{y=0}^{y=1}=\begin{cases}2x&\text{for }0\le x\le 1\\0&\text{otherwise}\end{cases}

(c) Get the marginal density of <em>Y</em> by integrating with respect to <em>x</em> instead:

f_Y(y)=\displaystyle\int_0^14xy\,\mathrm dx=\begin{cases}2y&\text{for }0\le y\le1\\0&\text{otherwise}\end{cases}

(d) The conditional distribution of <em>X</em> given <em>Y</em> can obtained by dividing the joint density by the marginal density of <em>Y</em> (which follows directly from the definition of conditional probability):

f_{X\mid Y}(x\mid y)=\dfrac{f_{X,Y}(x,y)}{f_Y(y)}=\begin{cases}2x&\text{for }0\le x\le 1\\0&\text{otherwise}\end{cases}

(e) From the definition of expectation:

E[X]=\displaystyle\int_0^1\int_0^1 x\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x^2\,\mathrm dx\right)\left(\int_0^1y\,\mathrm dy\right)=\boxed{\frac23}

E[Y]=\displaystyle\int_0^1\int_0^1 y\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x\,\mathrm dx\right)\left(\int_0^1y^2\,\mathrm dy\right)=\boxed{\frac23}

E[XY]=\displaystyle\int_0^1\int_0^1xy\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x^2\,\mathrm dx\right)\left(\int_0^1y^2\,\mathrm dy\right)=\boxed{\frac49}

(f) Note that the density of <em>X</em> | <em>Y</em> in part (d) identical to the marginal density of <em>X</em> found in (b), so yes, <em>X</em> and <em>Y</em> are indeed independent.

The result in (e) agrees with this conclusion, since E[<em>XY</em>] = E[<em>X</em>] E[<em>Y</em>] (but keep in mind that this is a property of independent random variables; equality alone does not imply independence.)

You might be interested in
Please answer this question now
Sever21 [200]

Answer:

82 degrees

Step-by-step explanation:

Measure of arc ABC = 86*2 = 172 degrees.

Measure of arc DC = 360 - (145+172) = 360-317 = 43 degrees.

Measure of arc BCD = 121+43 = 164 degrees.

Measure of angle A = 164/2 = 82 degrees

8 0
3 years ago
Read 2 more answers
Factor x^2 + 4x - 21
babymother [125]

Answer:

(x - 3)(x + 7)

Step-by-step explanation:

x^2 + 4x - 21

=> x^2 + 7x - 3x - 21

=> x(x + 7) -3(x + 7)

=> (x + 7)(x - 3)

5 0
3 years ago
Read 2 more answers
Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal prob
Novay_Z [31]

Answer:

a) By the Central Limit Theorem, it is approximately normal.

b) The standard error of the distribution of the sample mean is 1.8333.

c) 0.1379 = 13.79% of the samples will have a mean useful life of more than 38 hours.

d) 0.7939 = 79.39% of the samples will have a mean useful life greater than 34.5 hours

e) 0.656 = 65.6% of the samples will have a mean useful life between 34.5 and 38 hours

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Mean of 36 hours and a standard deviation of 5.5 hours.

This means that \mu = 36, \sigma = 5.5

a. What can you say about the shape of the distribution of the sample mean?

By the Central Limit Theorem, it is approximately normal.

b. What is the standard error of the distribution of the sample mean? (Round your answer to 4 decimal places.)

Sample of 9 means that n = 9. So

s = \frac{\sigma}{\sqrt{n}} = \frac{5.5}{\sqrt{9}} = 1.8333

The standard error of the distribution of the sample mean is 1.8333.

c. What proportion of the samples will have a mean useful life of more than 38 hours?

This is 1 subtracted by the pvalue of Z when X = 38. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{38 - 36}{1.8333}

Z = 1.09

Z = 1.09 has a pvalue of 0.8621

1 - 0.8621 = 0.1379

0.1379 = 13.79% of the samples will have a mean useful life of more than 38 hours.

d. What proportion of the sample will have a mean useful life greater than 34.5 hours?

This is 1 subtracted by the pvalue of Z when X = 34.5. So

Z = \frac{X - \mu}{s}

Z = \frac{34.5 - 36}{1.8333}

Z = -0.82

Z = -0.82 has a pvalue of 0.2061.

1 - 0.2061 = 0.7939

0.7939 = 79.39% of the samples will have a mean useful life greater than 34.5 hours.

e. What proportion of the sample will have a mean useful life between 34.5 and 38 hours?

pvalue of Z when X = 38 subtracted by the pvalue of Z when X = 34.5. So

0.8621 - 0.2061 = 0.656

0.656 = 65.6% of the samples will have a mean useful life between 34.5 and 38 hours

4 0
3 years ago
Which angles are adjacent angles?
Pepsi [2]
C, B, G  common vortex ( B) and common side (C, G) 


8 0
4 years ago
Four sisters bought a present for their mother. They received a 10% discount on the original price of the gift. After the discou
Orlov [11]

Answer:

$40

Step-by-step explanation:

x is the original price of the gift

(10% of x) is the value of the discount

(10% of x) = 10/100 . x = 0.1 x

0.1 x    is the value of the discount

x - (10% of x) is what was paid, after the discount

x - 0.1 x = 0.9 x

0.9 x    is what was paid

4 children paid $9/each

4 times $9 = $36

$36 is the total amount that was paid by the children

$36 = 0.9 x

$36 / 0.9 = x

x = $36 / 0.9 = 360 / 9

x = 40

;-)

4 0
3 years ago
Other questions:
  • Suppose that a car normally sells for $16,500 and now on sale ft $14,000. What is the percent of discount? If necessary round yo
    15·1 answer
  • The school has an acceptance rate of 15%. 15% of the students that apply get in. The school took in 1800 students last year. How
    12·1 answer
  • How many solutions -(3 - 6b) = 6b + 5<br><br><br><br><br>​
    12·1 answer
  • Need help here plss
    14·1 answer
  • 6. Gloves R’ Us was having a great day at their warehouse. Before lunch the store had sold a total of 82 pairs of gloves, and sa
    8·1 answer
  • The value of a new car decreases by about 15% in the first year. How much will a car be worth after one year if its initial valu
    12·1 answer
  • The nth term of a number sequence is n2 - 2
    13·1 answer
  • Identify the initial amount a and the growth factor b in the exponential function.
    15·1 answer
  • A triangle was translated 4 units down.
    10·2 answers
  • 1 mile= 1,760 yards.1 kilometer= 1,000 metersIf Jose walked 2 miles this morning, about how many kilometers did he walk?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!