Answer:
(4,3,2)
Step-by-step explanation:
We can solve this via matrices, so the equations given can be written in matrix form as:
![\left[\begin{array}{cccc}3&2&1&20\\1&-4&-1&-10\\2&1&2&15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%262%261%2620%5C%5C1%26-4%26-1%26-10%5C%5C2%261%262%2615%5Cend%7Barray%7D%5Cright%5D)
Now I will shift rows to make my pivot point (top left) a 1 and so:
![\left[\begin{array}{cccc}1&-4&-1&-10\\2&1&2&15\\3&2&1&20\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C2%261%262%2615%5C%5C3%262%261%2620%5Cend%7Barray%7D%5Cright%5D)
Next I will come up with algorithms that can cancel out numbers where R1 means row 1, R2 means row 2 and R3 means row three therefore,
-2R1+R2=R2 , -3R1+R3=R3
![\left[\begin{array}{cccc}1&-4&-1&-10\\0&9&4&35\\0&14&4&50\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C0%269%264%2635%5C%5C0%2614%264%2650%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-4&-1&-10\\0&1&\frac{4}{9}&\frac{35}{9}\\0&14&4&50\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%2614%264%2650%5Cend%7Barray%7D%5Cright%5D)
4R2+R1=R1 , -14R2+R3=R3
![\left[\begin{array}{cccc}1&0&\frac{7}{9}&\frac{50}{9}\\0&1&\frac{4}{9}&\frac{35}{9}\\0&0&-\frac{20}{9}&-\frac{40}{9}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26%5Cfrac%7B7%7D%7B9%7D%26%5Cfrac%7B50%7D%7B9%7D%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%260%26-%5Cfrac%7B20%7D%7B9%7D%26-%5Cfrac%7B40%7D%7B9%7D%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&0&\frac{7}{9}&\frac{50}{9}\\0&1&\frac{4}{9}&\frac{35}{9}\\0&0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26%5Cfrac%7B7%7D%7B9%7D%26%5Cfrac%7B50%7D%7B9%7D%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%260%261%262%5Cend%7Barray%7D%5Cright%5D)
, 
![\left[\begin{array}{cccc}1&0&0&4\\0&1&0&3\\0&0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%260%264%5C%5C0%261%260%263%5C%5C0%260%261%262%5Cend%7Barray%7D%5Cright%5D)
Therefore the solution to the system of equations are (x,y,z) = (4,3,2)
Note: If answer choices are given, plug them in and see if you get what is "equal to". Meaning plug in 4 for x, 3 for y and 2 for z in the first equation and you should get 20, second equation -10 and third 15.
Answer:
10
Step-by-step explanation:
h(x) = 6 - x
(h o h)(x) = h(h(x)) = 6 - h(x) = 6 - (6 - x) = 6 - 6 + x = x
(h o h)(x) = x
(h o h)(10) = 10
Answer:
este bien.
Step-by-step explanation:
length is 8m
Width is 6.5m
<u>Explanation:</u>
Let, width = b
So, length = 2b-5
area = 52
We know,
area of rectangle = length X width
So,
= 
On solving the above equation, we get
Width, b = 6.5m
length, l = 8m
Answer:
minimum of 13 chairs must be sold to reach a target of $6500
and a max of 20 chairs can be solved.
Step-by-step explanation:
Given that:
Price of chair = $150
Price of table = $400
Let the number of chairs be denoted by c and tables by t,
According to given condition:
t + c = 30 ----------- eq1
t(150) + c(400) = 6500 ------ eq2
Given that:
10 tables were sold so:
t = 10
Putting in eq1
c = 20 (max)
As the minimum target is $6500 so from eq2
10(150) + 400c = 6500
400c = 6500 - 1500
400c = 5000
c = 5000/400
c = 12.5
by rounding off
c = 13
So a minimum of 13 chairs must be sold to reach a target of $6500
i hope it will help you!