Answer:
25x
Step-by-step explanation:
Answer:
Step-by-step explanation:
its all blurry
Answer:
17+6i
-----------
25
Step-by-step explanation:
2+3i
---------
4+3i
We want to multiply by the complex conjugate of the denominator
4+3i has a complex conjugate of 4-3i
2+3i 4-3i
--------- * --------------
4+3i 4-3i
Lets multiply the numerator
(2+3i) ( 4-3i)
2*4 +4*3i -3i*2 - 3i*3i =
8 +12i -6i - 9i^2
Remember i^2 = -1
8 +6i -9(-1)
17 +6i
Lets multiply the denominator
(4+3i) ( 4-3i)
4*4 +4*3i -3i*4 - 3i*3i =
16 +12i -12i - 9i^2
Remember i^2 = -1
16 -9(-1)
25
Putting numerator over denominator
17+6i
-----------
25
Let <em>x</em> be the smallest of the three integers. Then the next two are <em>x</em> + 2 and <em>x</em> + 4.
• "The ratio of the smallest number to 1 less than twice the smallest number..."
This translates to
<em>x</em> / (2<em>x</em> - 1)
• "... the ratio of 3 more than the middle number to twice the largest number."
This translates to
((<em>x</em> + 2) + 3) / (2 (<em>x</em> + 4))
or, simplifying a bit,
(<em>x</em> + 5) / (2<em>x</em> + 8)
The ratioes are said to be equivalent, so
<em>x</em> / (2<em>x</em> - 1) = (<em>x</em> + 5) / (2<em>x</em> + 8)
Solve for <em>x</em> :
<em>x</em> (2<em>x</em> + 8) = (<em>x</em> + 5) (2<em>x</em> - 1)
2<em>x</em>² + 8<em>x</em> = 2<em>x</em>² + 9<em>x</em> - 5
8<em>x</em> = 9<em>x</em> - 5
-<em>x</em> = -5
<em>x</em> = 5
So the three integers are 5, 7, and 9.
What’s the question? It sounds like a statement