Answer:
The Temperature in the afternoon was
.
Step-by-step explanation:
Given:
Temperature in the morning = 
Rise in temperature = 
We need to find the temperature in the afternoon.
Solution:
Now we know that;
temperature in the afternoon is equal to Temperature in the morning plus Rise in temperature in afternoon.
framing in equation form we get;
temperature in the afternoon = 
Hence the Temperature in the afternoon was
.
Answer:
should be 48
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
2x+19=x+23
We simplify the equation to the form, which is simple to understand
2x+19=x+23
We move all terms containing x to the left and all other terms to the right.
+2x-1x=+23-19
We simplify the left and right sides of the equation.
+1x=+4
We divide both sides of the equation by 1 to get x.
x=4
5/4, -3Solve by Factoring 4x² + 7x - 15 = 02, -5Solve by Factoring x² + 3x - 10 = 0(1 ± i√11) / 2Solve using Quadratic Formula x² - x + 3 = 0(7 ± √3) / 2Solve using Quadratic Formula 2x² - 14x + 23 = 00, 2/3Solve by Factoring 6x² - 4x = 025/4<span>Complete the square to find the value of c.
x² - 5x + c</span>16<span>Complete the square to find the value of c.
x² + 8x + c</span>25<span>Complete the square to find the value of c.
x² - 10x + c</span>49/4<span>Complete the square to find the value of c.
x² + 7x + c</span>81/4<span>Complete the square to find the value of c.
x² - 9x + c</span>9<span>Complete the square to find the value of c.
x² + 6x + c</span>121/4<span>Complete the square to find the value of c.
x² - 11x + c</span>81<span>Complete the square to find the value of c.
x² + 18x + c</span>36<span>Complete the square to find the value of c.
x² - 12x + c</span>1<span>Complete the square to find the value of c.
x² + 2x + c</span>¼<span>Complete the square to find the value of c.
x² - x + c</span>100<span>Complete the square to find the value of c.
x² + 20x + c</span>225<span>Complete the square to find the value of c.
x² - 30x + c</span>9/4<span>Complete the square to find the value of c.
x² + 3x + c</span>4<span>Complete the square to find the value of c.
x² - 4x + c</span>121<span>Complete the square to find the value of c.
x² + 22x + c</span>144<span>Complete the square to find the value of c.
x² + 24x + c</span>2500<span>Complete the square to find the value of c.
x² - 100x + c</span>9/64<span>Complete the square to find the value of c.
x² + ¾x + c</span>1/16<span>Complete the square to find the value of c.
x² - ½x + c</span>f(x) = (x + ½)² + ¾Write in vertex form: f(x) = x² + x + 1f(x) = (x - 1)² + 3Write in vertex form: f(x) = 4 + x² - 2x(-5, -28)What are the coordinates of the vertex of f(x) = (x + 5)² - 28?(9, -21)What are the coordinates of the vertex of f(x) = (x - 9)² - 21?f(x) = (x - 8)² - 56Which function in vertex form is equivalent to f(x) = x² + 8 - 16x?f(x) = (x - 3)² + 9Write in vertex form: f(x) = x² - 6x + 18(-3, -13)What are the coordinates of the vertex of the function f(x) = 6x - 4 + x²?f(x) = (x - 3)² - 8Write in vertex form: f(x) = x² - 6x + 1f(x) = (x + 3)² - 6Write in vertex form: f(x) = x² + 6x + 3f(x) = (x + 5)² - 28Write in vertex form: f(x) = x² + 10x - 3f(x) = (x - 9)² - 21Write in vertex form: f(x) = x² - 18x + 600, -4Solve by graphing.0, 4Solve by graphing.±1Solve by graphing.±2Solve by graphing.-3, 1Solve by graphing.no real solutionsSolve by graphing.0Solve by graphing.<span>2</span>
Answer:
If the problem is,

By finding it,
Take a 5 box grid in which each box represents 1 unit,
Then take 1 box of this grid,
Repeat this step,
Finally, Add them,
We get,
A grid having 10 boxes with 2 taken boxes,
Thus, 
When we do these steps for three grids we will get
,
That is, by multiplying the result of
by 3 we will obtain 
