Answer:
2:7
Step-by-step explanation:
If 2 of the puppies are brindle that leaves 7 that are not out of the nine making the ratio 2:7.
Step-by-step explanation:
<u>The volume of rectangular prism:</u>
<u>Given:</u>
- l = 8 m, w = 4 m, h = 5 m
<u>The volume is:</u>
<u>Correct choices are:</u>
Answer:

Step-by-step explanation:
![\frac{15}{\sqrt{31} - 4}\\\\=\frac{15}{\sqrt{31} - 4} \times \frac{\sqrt{31} + 4}{\sqrt{31}+ 4} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ rationalizing \ the \ denominator \ ]\\\\=\frac{15( \sqrt{31} + 4 )}{(\sqrt{31})^2 - (4)^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ (a-b)(a+b) = a^2 - b^2 \ ]\\\\=\frac{15 ( \sqrt{31} + 4)}{31 - 16}\\\\=\frac{15 (\sqrt{31} + 4)}{15}\\\\= \sqrt{31} + 4](https://tex.z-dn.net/?f=%5Cfrac%7B15%7D%7B%5Csqrt%7B31%7D%20-%204%7D%5C%5C%5C%5C%3D%5Cfrac%7B15%7D%7B%5Csqrt%7B31%7D%20-%204%7D%20%5Ctimes%20%5Cfrac%7B%5Csqrt%7B31%7D%20%2B%204%7D%7B%5Csqrt%7B31%7D%2B%204%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%20%5B%20%20%5C%20rationalizing%20%5C%20the%20%5C%20denominator%20%5C%20%5D%5C%5C%5C%5C%3D%5Cfrac%7B15%28%20%5Csqrt%7B31%7D%20%2B%204%20%29%7D%7B%28%5Csqrt%7B31%7D%29%5E2%20-%20%284%29%5E2%7D%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5B%20%5C%20%28a-b%29%28a%2Bb%29%20%3D%20a%5E2%20-%20b%5E2%20%5C%20%5D%5C%5C%5C%5C%3D%5Cfrac%7B15%20%28%20%5Csqrt%7B31%7D%20%2B%204%29%7D%7B31%20-%2016%7D%5C%5C%5C%5C%3D%5Cfrac%7B15%20%28%5Csqrt%7B31%7D%20%2B%204%29%7D%7B15%7D%5C%5C%5C%5C%3D%20%5Csqrt%7B31%7D%20%2B%204)
Answer:
£0.40
Step-by-step explanation:
Divide £40 by £3.30 to find the number she can buy
£40 ÷ £3.30 = 12.1212..
That is she can buy 12 light bulbs
cost = 12 × £3.30 = £39.60
change = £40 - £39.60 = £0.40
Answer:
a) 186
Step-by-step explanation:
g(x) = 7(x^2 + 3) - 10
g(5) = 7((5)^2 + 3) - 10
g(5) = 7(25 + 3) - 10
g(5) = 7 × 25 + 7 × 3 - 10
g(5) = 175 + 21 - 10
g(5) = 186