Since orbital period depends on how far you are from the sun, planets closer to the sun have a orbital period less than one earth year.
These planets are Mercury and Venus
If there were an element above fluorine, its state would be a gas. This is because fluorine is located in the non-metal section of the periodic table which can all be found as a gas at room temperature.
Answer:
42 liters of oxygen (liquid) weighs 47900 grams.
Explanation:
<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N
Answer:
2. All the naturally occurring isotopes of Mg.
Explanation:
You want to know the atomic mass of the magnesium you use in the lab. That’s “natural” magnesium. So, you must use the weighted average of all the naturally occurring isotopes in natural Mg.
1. and 3. are <em>wrong</em>. You won’t get the correct mass for natural Mg if you use only the artificial isotopes for your calculation.
4. is <em>wrong</em>. You must use all the naturally occurring isotopes. The two most abundant isotopes of Mg account for only 90 % of the atoms. If you ignore the other 10 %, your calculation will be wrong.