The answer is: emitted gas is carbon dioxide (CO₂).
Neutralization is is reaction in which an acid (in this example vinegar or acetic acid CH₃COOH) and a base (in this example soda)
Balanced chemical reaction of vinegar and antacid:
CH₃COOH(aq) + NaHCO₃(aq) → CH₃COONa(aq) + H₂O(l) + CO₂(g).
Sodium acetate (CH₃COONa) is a salt.
Sodium bicarbonate (NaHCO₃) is an antacid. Sodium bicarbonate is the active ingredient in baking soda.
I think the correct answer from the choices listed above is option D. When a molecular compound melts, they undergo the process of phase change from solid to liquid therefore m<span>olecules arranged in a regular pattern change to an irregular pattern. Hope this answers the question.</span>
Answer:
Q = 2647 J
Explanation:
Specific heat capacity is the amount of energy required by one Kg of a substance to raise its temperature by 1 °C.
In thermodynamics the equation used is as follow,
Q = m Cp ΔT
Where;
Q = Heat = ?
m = mass = 660 g
Cp = Specific Heat Capacity = 0.3850 J.g⁻¹.°C⁻¹
ΔT = Change in Temperature = 23.35 °C - 12.93 °C = 10.42 °C
Putting values in eq. 1,
Q = 660 g × 0.3850 J.g⁻¹.°C⁻¹ × 10.42 °C
Q = 2647 J
Answer: X3+
Explanation:
Every atom aim to achieve stability by receiving electrons or giving their valence electrons in order to have a complete outermost shell of 2 (duplet) or 8 (octet structure).
In this case, the atom X will easily give off its three valence electrons to another atom(s), thereby forming a trivalent positive ion (X3+) with a stable duplet or octet structure (i.e an outermost shell with 2 or 8 electrons).
X --> X3+ + 3e-
Thus, due to the give away of three electrons (3e-), the atom X becomes X3+.
Answer:
my probably best answer is B