The graph lines stay the same, however the y-intercept changes from (-1,0) to (-2,0), since it is now g(x) = x - 2, instead of f(x) = x - 1.
Literally whatever number is in the parenthesis, if it’s negative like -4 then you could down 4 lines of squares and put a dot. if it’s positive then go up
Answer:
Given:
cherry tree seedlings : 64
peach tree seedlings : 96
64/96 : Simplify this fraction
64 / 8 = 8 / 4 = 2
96 / 8 = 12 / 4 = 3
2 and 3 number of seedlings per row
64 / 2 = 32
96 / 3 = 32
number of rows
The maximum number of rows that the owner can plant is 32 rows with 2 cherry tree seedlings and 3 peach tree seedlings.
The unsimplified fraction is 8/12 which can be reduced to 2/3
The given expression is ![3b^2*(\sqrt[3]{54a}) + 3*(\sqrt[3]{2ab^6})](https://tex.z-dn.net/?f=%203b%5E2%2A%28%5Csqrt%5B3%5D%7B54a%7D%29%20%2B%203%2A%28%5Csqrt%5B3%5D%7B2ab%5E6%7D%29%20)
This can be simplified as :
= ![3*b^2*(\sqrt[3]{27 *2*a}) + 3*(\sqrt[3]{2*a*b^6})](https://tex.z-dn.net/?f=%203%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B27%20%2A2%2Aa%7D%29%20%2B%203%2A%28%5Csqrt%5B3%5D%7B2%2Aa%2Ab%5E6%7D%29%20)
We know that: ![\sqrt[3]{27} = 3](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B27%7D%20%20%3D%203%20%20%20)
Similarly we also can simplify: ![\sqrt[3]{b^6} = b^2](https://tex.z-dn.net/?f=%20%20%5Csqrt%5B3%5D%7Bb%5E6%7D%20%20%3D%20b%5E2%20)
So our expression will look like this:
= ![3*3*b^2*(\sqrt[3]{2a}) + 3*b^2*(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%203%2A3%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20%2B%203%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
= ![9b^2*(\sqrt[3]{2a}) + 3b^2*(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%209b%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20%2B%203b%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
=![\sqrt[3]{2a}*(9b^2 + 3b^2)](https://tex.z-dn.net/?f=%20%20%5Csqrt%5B3%5D%7B2a%7D%2A%289b%5E2%20%2B%203b%5E2%29%20)
=![\sqrt[3]{2a}*(12b^2)](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B2a%7D%2A%2812b%5E2%29%20)
This can also be written as:
![12b^2(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%2012b%5E2%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
So the Answer is Option B