1) The perimeter is the sum of the lengths of the straight edge (the diameter of the semicircle) and the length of the arc of the semicircle.
The circumference of a 4 ft circle is
π*diameter = π*4 ft ≈ 12.566 ft
The semicircle will have a length that is half that, 6.283 ft. When this length is added to the diameter, the perimeter is found to be
Perimeter = 4 ft + 6.283 ft ≈ 10.3 ft.
2) The area of a circle is given by the formula
A = (π/4)d²
For a diameter of 15 inches, the area is
A = (π/4)(15 in)² = 56.25π in²
A ≈ 176.7146 in²
The area of the circle is about 176.71 in².
Answer:
A, B, F
Step-by-step explanation:
2/3 - x + 1/6 = 6x
Collect like terms
2/3 + 1/6 = 6x + x
(4+1) / 6 = 7x
5/6 = 7x
x = 5/6 ÷ 7
= 5/6 × 1/7
x = 5/42
a) 4 - 6x + 1 = 36x
4 + 1 = 36x + 6x
5 = 42x
x = 5/42
Equivalent to the last step of the simplification above
b) 5/6 - x = 6x
5/6 = 6x + x
5/6 = 7x
This is equivalent to the third step of the simplification
c) 4 - x + 1 = 6x
4 + 1 = 6x + x
5 = 7x
x = 5/7
Not equivalent to any of the steps in the simplification above
d) 5/6 + x = 6x
5/6 = 6x - x
5/6 = 5x
x = 5/6 ÷ 5
= 5/6 × 1/5
x = 5/30
Not equivalent to any of the steps in the simplification above
e) 5 = 30x
x = 5/30
Not equivalent to any of the steps in the simplification above
f) 5 = 42x
x = 5/42
Equivalent to the last step of the simplification above
Answer:
15.51
Step-by-step explanation:
14.91x4%=.60
14.91+.60=15.51
Answer:

Step-by-step explanation:
we know that
The equation of the line in slope intercept form is equal to

Step 1
Find the slope m
Let


Step 2
Find the value of b
we have


substitute in the equation of the line



The equation in slope intercept form is equal to

Answer:

Step-by-step explanation:
![\sf{ [ (4 \frac{1}{6} + 2 \frac{1}{3} ) \div 4 \frac{1}{3}] - 1\frac{1}{2} }](https://tex.z-dn.net/?f=%20%5Csf%7B%20%5B%20%284%20%5Cfrac%7B1%7D%7B6%7D%20%20%2B%202%20%5Cfrac%7B1%7D%7B3%7D%20%29%20%20%5Cdiv%204%20%5Cfrac%7B1%7D%7B3%7D%5D%20-%20%201%5Cfrac%7B1%7D%7B2%7D%20%7D)
Convert the mixed numbers into improper fraction
![\longrightarrow{ \sf{ [ ( \frac{25}{6} + \frac{7}{3} ) \div \frac{13}{3}] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%28%20%5Cfrac%7B25%7D%7B6%7D%20%20%2B%20%20%5Cfrac%7B7%7D%7B3%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
Add the fractions : 25 / 6 and 7 / 3
While performing addition or subtraction of unlike fractions, you have to express the given fractions into equivalent fractions of common denominator and add or subtract as we do with like fraction.
To do so, first take the L.C.M of 6 and 3 which results to 6
![\longrightarrow\sf{ [( \frac{25 + 7 \times 2}{6} ) \div \frac{13}{3} ] - \frac{3}{2}}](https://tex.z-dn.net/?f=%20%20%5Clongrightarrow%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%207%20%5Ctimes%202%7D%7B6%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%20)
![\longrightarrow{ \sf{ [( \frac{25 + 14}{6} ) \div \frac{13}{3} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%2014%7D%7B6%7D%20%29%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
![\longrightarrow{ \sf{ [ \frac{39}{6} \div \frac{13}{3}] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
Multiply the dividend by the reciprocal of the divisor.
Reciprocal of any number or fraction can be obtained by interchanging the position of numerator and denominator
![\longrightarrow{ \sf{ [ \frac{39}{6} \times \frac{3}{13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Ctimes%20%20%5Cfrac%7B3%7D%7B13%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
To multiply one fraction by another, multiply the numerators for the numerator and multiply the denominators for its denominator and reduce the fraction obtained after multiplication into lowest term
![\longrightarrow{ \sf{ [ \frac{39 \times 3}{6 \times 13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%20%5Ctimes%203%7D%7B6%20%5Ctimes%2013%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
![\longrightarrow{ \sf{ [ \frac{117}{78} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B117%7D%7B78%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)

While performing the addition or subtraction of like fractions , you just have to add or subtract the numerator respectively in which the denominator is retained same

Subtract 3 from 3

Divide 0 by 2

Hope I helped!
Best regards!