Not sure but I think the answer is D because D for DIS N ya that’s what I think
to a scientist and asked him for his secret formula but he said I had to do the ravioli dance first before I got to see it and I made a fool of myself and died that morning
The action potential spreads through an axon by depolarizing adjacent membrane to threshold.
- K+ departs the cell after Na+, which enters the cell first. Ions can move freely across the axon membrane because of the difference during the action potential.
- Because sodium contains a positive charge, the neuron becomes more positive and depolarized. Potassium channels take longer to open. As soon as the cell does open, K+ rushes out, reversing the depolarization known as repolarization.
- Sodium channels close during the peak of the action potential when potassium leaves the cell. When potassium ions are effluxed, the membrane potential is lowered or the cell becomes hyperpolarized.
- Outside of the cell, the concentration of Na+ is greater than inside the cell. while the concentration of K+ is is greater inside the cell than outside.
learn more about action potential here: brainly.com/question/6705448
#SPJ4
They have 46 chromosomes :)
Answer:
- Hydrogen ion concentration is lower in the mitochondrial matrix than in the intermembrane space.
- Oxidative phosphorylation relies on the hydrogen ion concentration gradient generated and maintained by the electron transport chain.
- Hydrogen ions enter the mitochondrial matrix via facilitated diffusion.
Explanation:
Oxidative phosphorylation is a metabolic pathway by which Adenosine Triphosphate (ATP) molecules are produced through the transfer of electrons from NADH or FADH2 to molecular oxygen (O2). The hydrogen (H+) ions are pumped from the mitochondrial matrix to the intermembrane space, and this movement of protons generates an electrochemical gradient across the mitochondrial membrane which is used by the ATP synthase to produce ATP. This gradient is generated by the movement of electrons through a series of electron carriers (e.g., cytochrome c and ubiquinone) that are embedded in the inner mitochondrial membrane. The movement of these H+ ions across the semipermeable mitochondrial membrane moving down their electrochemical gradient is named chemiosmosis and is an example of facilitated diffusion.