Answer:
First, you would need to find 7% of $64.99 which can be calculated like this:
64.99 x 0.07 = 4.55, this means that the sales tax on the boots is $4.55.
It would be 4 hours because that's the closet you can get with the answer
Answer:


________________



Step-by-step explanation:
<u>What</u><u> </u><u>you</u><u> </u><u>need</u><u> </u><u>to know</u>
- 
- 
- 
45° = [4x - 3]°
+ 3° + 3°
____________
![\frac{48°}{4°} = \frac{[4x]°}{4°} \\ \\ 12° = x](https://tex.z-dn.net/?f=%5Cfrac%7B48%C2%B0%7D%7B4%C2%B0%7D%20%3D%20%5Cfrac%7B%5B4x%5D%C2%B0%7D%7B4%C2%B0%7D%20%5C%5C%20%5C%5C%2012%C2%B0%20%3D%20x)
Then use the Triangular Interior Angles Theorem to find the
then set that equal to the
:
180° = 41° + 45° + 
180° = 86° + 
- 86° - 86°
______________
94° = 
94° = [11y + 6]°
- 6° - 6°
__________
![\frac{88°}{11°} = {[11y]°}{11°} \\ \\ 8° = y](https://tex.z-dn.net/?f=%5Cfrac%7B88%C2%B0%7D%7B11%C2%B0%7D%20%3D%20%7B%5B11y%5D%C2%B0%7D%7B11%C2%B0%7D%20%5C%5C%20%5C%5C%208%C2%B0%20%3D%20y)
_______________________________________________
<u>What</u><u> </u><u>you</u><u> </u><u>need</u><u> </u><u>to know</u>
- 
- 
- 
90° = [13y - 1]°
+ 1° + 1°
______________
![\frac{91°}{13°} = \frac{[13y]°}{13°} \\ \\ 7° = y \\ \\ 90° = m∠R](https://tex.z-dn.net/?f=%5Cfrac%7B91%C2%B0%7D%7B13%C2%B0%7D%20%3D%20%5Cfrac%7B%5B13y%5D%C2%B0%7D%7B13%C2%B0%7D%20%5C%5C%20%5C%5C%207%C2%B0%20%3D%20y%20%5C%5C%20%5C%5C%2090%C2%B0%20%3D%20m%E2%88%A0R)
Then use the Triangular Interior Angles Theorem to find the
then set that equal to the
:
180° = 28° + 90° + 
180° = 118° + 
- 118° - 118°
______________
62° = 
62° = [6z - 4]°
+ 4° + 4°
____________
![\frac{66°}{6°} = \frac{[6z]°}{6°} \\ \\ 11° = z](https://tex.z-dn.net/?f=%5Cfrac%7B66%C2%B0%7D%7B6%C2%B0%7D%20%3D%20%5Cfrac%7B%5B6z%5D%C2%B0%7D%7B6%C2%B0%7D%20%5C%5C%20%5C%5C%2011%C2%B0%20%3D%20z)
I am joyous to assist you anytime.
<h2>
Answer:</h2>
The table which shows that a function's range has exactly three elements is:
x y
3 8
4 6
5 12
6 8
<h2>
Step-by-step explanation:</h2>
<u>Domain of a function--</u>
The domain of a function is the set of all the x-values i.e. the value of the independent variable for which a function is defined.
<u>Range of a function--</u>
It is the set of all the y-value or the values which are obtained by the independent variable i.e. the values obtained by the function in it's defined domain.
a)
x y
1 4
2 4
3 4
Domain: {1,2,3}
Range: {4}
Hence, the range has a single element.
b)
x y
3 8
4 6
5 12
6 8
Domain: {3,4,5,6}
Range: {6,8,12}
Hence, the range has three element.
c)
x y
0 5
2 9
0 15
This relation is not a function.
because 0 has two images.
0 is mapped to 5 and 0 is mapped to 15.
d)
x y
1 4
3 2
5 1
3 4
This relation is not a function.
because 3 has two images.
3 is mapped to 2 in the ordered pair (3,2) and 3 is mapped to 4 in the ordered pair (3,4)