4 infiltration percolation!! I think! Correct me if I’m wrong
A) CH4
In general, methane reactions are difficult to control. Partial oxidation to methanol, for example, is a rather difficult reaction because the chemical reactions that occur continue to form carbon dioxide and water even though the amount of oxygen available is insufficient.
<h2>Further explanation
</h2>
Methane is the simplest hydrocarbon in the form of gas with the chemical formula CH4. Pure methane does not smell, but if used for commercial purposes, a bit of sulfur is usually added to detect leaks that might occur.
Methane is a greenhouse gas. Methane is used in chemical industrial processes and can be transported as frozen liquids (liquefied natural gas, or LNG).
Methane is a major component of natural gas, around 87% of volume.
Methane is not toxic, but is highly flammable and can cause explosions when mixed with air.
Learn More
CH4 / Methane brainly.com/question/9473007
Benefits of methane brainly.com/question/10818009
Details
Class: college
Subject: chemistry
Keywords: ch4, methane, chemicals
Here we have to choose the right option which tells the moles of CaCl₂ will react with 6.2 moles of AgNO₃ in the reaction
2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
6.2 moles of silver nitrate (AgNO₃) will react with B. 3.1 moles of calcium chloride (CaCl₂).
From the reaction: 2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
Thus 2 moles of AgNO₃ reacts with 1 mole of CaCl₂
Henceforth, 6.2 moles of AgNO₃ reacts with
= 3.1 moles of CaCl₂.
1 mole of CaCl₂ reacts with 2 moles of AgNO₃. Thus-
A. 2.2 moles of CaCl₂ will react with 2.2×2 = 4.4 moles of AgNO₃.
C. 6.2 moles of CaCl₂ will reacts with 6.2×2 = 12.4 moles of AgNO₃.
D. 12.4 moles of CaCl₂ will reacts with 12.4 × 2 = 24.8 moles of AgNO₃
Thus the right answer is 6.2 moles of AgNO₃ will react with 3.1 moles of CaCl₂.
Answer:
False.
Explanation:
Humans are made of matter too :)
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ