1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
2 years ago
13

How do you solve these type of problems ?

Mathematics
1 answer:
-Dominant- [34]2 years ago
8 0

Answer:

x = 15

Step-by-step explanation:

This involves the Secant and Segments Theorem.

8(19 + 8) = 9(9 + x)

216 = 81 + 9x

9x = 135

x = 15

You might be interested in
Find the area and perimeter of the figure below, explain and show work pls
Stels [109]
This is my work and only part 1

7 0
3 years ago
Read 2 more answers
The diameter of a circle is 16 meters what is the area
KengaRu [80]

Answer:

201.1 meters squared

Step-by-step explanation:

A= pi*r squared

Diameter= 16, to find the radius we must divide by 2

16/2=8

Radius= 8

A= pi* (8)^2

A= 201.06

The area of the circle is 201.1 meters squared.

3 0
3 years ago
12x^3-11x^2+9x+18 divided by 4x+3
atroni [7]
12x^3-11x^2+9x+18 divided by 4x+3

put he division into fraction

12x^3-11x^2+9x+18/4 x +3

reduced fraction by 2

12x^3-11x^2+9x+9/2 x +3

calculate sum

12x^3-11x^2+27/2 x +3
that is your answer ^

hope this helps :)
3 0
2 years ago
ILL GIVE BRAINLIST IF U ANSWER THIS QUESTION
Yakvenalex [24]
57 degrees because 180-123= 57 degrees
7 0
2 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Other questions:
  • Pepper Jakie has 12 picks. 1 out of every 4 picks orange the rest are green how many picks ar orange?
    8·2 answers
  • suppose your friends parents invest 10,000 in an account paying 6% compounded annually.what will the balance be after 5 years
    5·1 answer
  • You are searching for two integers. The sum of twice the first integer and three times the second integer is nine. At the same t
    11·1 answer
  • Using the right triangle below, find the tangent of angle B.
    10·1 answer
  • Need help with this simple math question:<br> 7(x+1) x=8
    11·2 answers
  • Calcula el volumen de un depósito de desechos sólidos subterráneo formado por una parte prisma
    11·1 answer
  • If john works 20 hours a week and gets a fixed amount of 4 dollars for the first 8 hours and an additional 2 dollars for each ad
    11·1 answer
  • On average, Cody runs 4 miles in 38 minutes. How fast should he plan to run a 10-mile race if he maintains this pace?
    8·1 answer
  • The temperature of the pool water started at 82 degrees, and it is cooling down 0.4 degrees each hour. If the water temperature
    10·1 answer
  • Mrs. Steckler is taking 8 students to an amusement park. Mr. McGraw is taking 16 students to a water park. Each student will buy
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!