Given:
The expression is:

It leaves the same remainder when divided by x -2 or by x+1.
To prove:

Solution:
Remainder theorem: If a polynomial P(x) is divided by (x-c), thent he remainder is P(c).
Let the given polynomial is:

It leaves the same remainder when divided by x -2 or by x+1. By using remainder theorem, we can say that
...(i)
Substituting
in the given polynomial.


Substituting
in the given polynomial.



Now, substitute the values of P(2) and P(-1) in (i), we get




Divide both sides by 3.


Hence proved.
The first given equation is:
4x + 3y = 6
which can be rewritten as:
2(2x) + 3y = 6 .............> equation I
The second given equation is:
2x + 2y = 5
which can be rewritten as:
2x = 5 - 2y ........> equation II
Substitute with equation II in equation I to get the value of y as follows:
2(5-2y) + 3y = 6
10 - 4y + 3y = 6
-y = 6-10 = -4
y = 4
Substitute with the y in equation II to get x as follows:
2x = 5 - 2y
2x = 5 - 2(4)
2x = 5 - 8 = -3
x = -3/2
From the above calculations:
x = -3/2
y = 4
In an equation like that, y would double into 2y. But just keep in mind that what happens to one side must happen to another.
Answer:
A
Step-by-step explanation:
135 140 140 150 155 160 165 170 175
in this pattern you are adding 5 multiple times