To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as
where
I = Moment of inertia For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:
Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as
Using the expression of angular acceleration we can find the to then find the torque, that is,
With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so
Therefore the torque exerted on it is
According to Newton laws of motion,
F = m*a
Here, m = 1,560 Kg
a = 1.30 m/s²
Substitute their values,
F = 1,560 * 1.30
F = 2028 N ~ 2030 N [ Closest value ]
In short, Your Answer would be Option C
Hope this helps!
Answer is B hope this helps
Answer: A. Object A will have a positive charge.
Explanation: If the number of protons and electrons are the same, their net charges cancel each other out, and you have a neutral charge. If electrons are transferred to another object, the amount of positive charge will outweigh the amount of negative charge. As a result, you are left with an overall positive charge in object A. Meanwhile, object B is now negative.