Answer:
7.24 ohm
Explanation:
Let R1 and R2 are resistance of two resistors.
Emf=E=20 V
Current,I=2 A
Current,I'=10 A
We have to find the magnitude of the greater of the two resistances.
In series


By using the formula

...(1)
In parallel







Substitute the value




By using quadratic formula




Substitute the value


Hence, the magnitude of the greater of the two resistance=7.24 ohm
In order to compute the torque required, we may apply Newton's second law for circular motion:
Torque = moment of inertia * angular acceleration
For this, we require the angular acceleration, α. We may calculate this using:
α = Δω/Δt
The time taken to achieve rotational speed may be calculated using:
time = 1 revolution * 2π radians per revolution / 3.5 radians per second
time = 1.80 seconds
α = (3.5 - 0) / 1.8
α = 1.94 rad/s²
The moment of inertia of a thin disc is given by:
I = MR²/2
I = (0.21*0.1525²)/2
I = 0.002
τ = 1.94 * 0.002
τ = 0.004
The torque is 0.004
Answer:
F = 200 N
Explanation:
Given that,
The mass suspended from the rope, m = 20 kg
We need to find the resultant force acting on the rope. The resultant force on the rope is equal to its weight such that,
F = mg
Where
g is acceleration due to gravity
Put all the values,
F = 20 kg × 10 m/s²
F = 200 N
So, the resultant force on the mass is 200 N.
More cool stars produce much of their light in the red part of the spectrum, so you see them, and bam, the color red. More hot stars, however, produce much more of their light in the green and or yellow spectrums, with much more tinier amounts of red / blue. This balance of the colors, your eye, sees simply as white. The more hot something is, the greater frequency of radiation it produces! Blue light has a higher frequency than red light, so the stars that glow red are cooler, than the stars that glow blue. :)
Hope this helped!
Answer:
a. Final velocity, V = 2.179 m/s.
b. Final velocity, V = 7.071 m/s.
Explanation:
<u>Given the following data;</u>
Acceleration = 0.500m/s²
a. To find the velocity of the boat after it has traveled 4.75 m
Since it started from rest, initial velocity is equal to 0m/s.
Now, we would use the third equation of motion to find the final velocity.
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement measured in meters.
Substituting into the equation, we have;


Taking the square root, we have;

<em>Final velocity, V = 2.179 m/s.</em>
b. To find the velocity if the boat has traveled 50 m.


Taking the square root, we have;

<em>Final velocity, V = 7.071 m/s.</em>