Answer:
[OH⁻] = 3.34x10⁻³M; Percent ionization = 0.54%; pH = 11.52
Explanation:
Kb of the reaction:
NH3 + H2O(l) ⇄ NH4+ + OH-
Is:
Kb = 1.8x10⁻⁵ = [NH₄⁺] [OH⁻] / [NH₃]
<em>As all NH₄⁺ and OH⁻ comes from the same source we can write: </em>
<em>[NH₄⁺] = [OH⁻] = X</em>
<em>And as </em>[NH₃] = 0.619M
1.8x10⁻⁵ = [X] [X] / [0.619M]
1.11x10⁻⁵ = X²
3.34x10⁻³ = X = [NH₄⁺] = [OH⁻]
<h3>[OH⁻] = 3.34x10⁻³M</h3><h3 />
% ionization:
[NH₄⁺] / [NH₃] * 100 = 3.34x10⁻³M / 0.619M * 100 = 0.54%
pH:
As pOH = -log [OH-]
pOH = 2.48
pH = 14 - pOH
<h3>pH = 11.52</h3>
Answer:

Explanation:
The Rydberg equation gives the wavelength λ for the transitions:

where
R= the Rydberg constant (1.0974 ×10⁷ m⁻¹) and

Data:

λ = 657 nm
Calculation:

<span>What classification should this reaction have?
Cu + 2AgNO</span>₃ ⇒ Cu(NO₃)₂<span> + 2Ag
</span><span>single replacement</span>
Answer:
The volume is 50, 74 liters
Explanation:
We use the formula PV = nRT. The temperature in Kelvin is = 273+ 20 =293K
PV=nRT ---> V = (nRT) / P
V= (2.0 mol x 0,082 l atm /K mol x 293 K) / 0,947 atm
V=50,74128828 l
The answer is 1 3 and 5 just took the test !!!!