I am pretty sure that the answer is the first one but I’m not 100%
40 % out of 80 for red
20% out of 80 for blue
Answer:
Step-by-step explanation:
In each case we find the discriminant b^2 - 4ac.
If the discriminant is negative, we have two unequal, complex roots.
If the discriminant is zero. we have two equal, real roots.
If the discriminant is positive, we have two unequal real roots.
#51: 8v^2 - 12v + 9: the discriminant is (-12)^2 - 4(8)(9) = -144. we have two unequal, complex roots
#52: (-11)^2 - 4(4)(-14) = 121 + 224 = 345. we have two unequal real roots.
#53: (-5)^2 - 4(7)(6) = 25 - 168 (negative). we have two unequal, complex roots.
#54: (4)^2 - 16 = 0. We have two equal, real roots.
Answer:
0
Step-by-step explanation:
∫ sin²(x) cos(x) dx
If u = sin(x), then du = cos(x) dx.
∫ u² du
⅓ u³ + C
⅓ sin³(x) + C
Evaluate between x=0 and x=π.
⅓ sin³(π) − ⅓ sin³(0)
0