Answer:
i want to say 36, im not 100% sure though
Step-by-step explanation:
Answer:
It is not normally distributed as it has it main concentration in only one side.
Step-by-step explanation:
So, we are given that the class width is equal to 0.2. Thus we will have that the first class is 0.00 - 0.20, second class is 0.20 - 0.40 and so on(that is 0.2 difference).
So, let us begin the groupings into their different classes, shall we?
Data given:
0.31 0.31 0 0 0 0.19 0.19 0 0.150.15 0 0.01 0.01 0.19 0.19 0.53 0.53 0 0.
(1). 0.00 - 0.20: there are 15 values that falls into this category. That is 0 0 0 0.19 0.19 0 0.15 0.15 0 0.01 0.01 0.19 0.19 0 0.
(2). 0.20 - 0.40: there are 2 values that falls into this category. That is 0.31 0.31
(3). 0.4 - 0.6 : there are 2 values that falls into this category.
(4). 0.6 - 0.8: there 0 values that falls into this category. That is 0.53 0.53.
Class interval frequency.
0.00 - 0.20. 15.
0.20 - 0.40. 2.
0.4 - 0.6. 2.
The Solution.
The given equation is

Substituting 11 for x, we can get the value of y.

Hence, the value of y is 18.
One decade is 10 years+ 8 years is 18 total years
18 minus 9 is 9 years
Hope this helps
Answer:
5.44 cm³
Step-by-step explanation:
The volume of the hexagonal nut can be found by multiplying the area of the end face by the length of the nut. The end face area is the difference between the area of the hexagon and the area of the hole.
The area of a hexagon with side length s is given by ...
A = (3/2)√3·s²
For s=1 cm, the area is ...
A = (3/2)√3(1 cm)² = (3/2)√3 cm²
__
The area of a circle is given by ...
A = πr²
The radius of a circle with diameter 1 cm is 0.5 cm. Then the area of the hole is ...
A = π(0.5 cm)² = 0.25π cm²
__
The volume is the face area multiplied by the length, so is ...
V = Bh = ((3/2)√3 -0.25π)(3) . . . . . cm³
V = (9/2)√3 -0.75π cm³ ≈ 5.44 cm³
The volume of the metal is about 5.44 cm³.