Answer: 1/24
Step-by-step explanation:
1/2 divided by 12
Considering the relation built the presence of point M on line LN, the numerical length of LN is of 9 units.
<h3>What is the relation from the presence of point M on the line LN?</h3>
Point M splits line LN into two parts, LM and MN, hence the total length is given by:
LN = LM + MN.
From the given data, we have that:
Hence we first solve for x.
LN = LM + MN.
2x - 5 = 3 + x - 1
x = 7.
Hence the total length is:
LN = 2x - 5 = 2 x 7 - 5 = 14 - 5 = 9 units.
More can be learned about relations and lines at brainly.com/question/2306122
#SPJ1
3 outa 12 are 5
so we divide 150 by 12
Hence Getting 25.
So 25 Is the Answer
I Hope I Helped :)
Answer:
666.67π .ft^3
<em>here's</em><em> your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>radius</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>1</em><em>0</em><em> </em><em>ft</em>
<em>=</em><em>></em><em> </em><em>height</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>2</em><em>0</em><em> </em><em>ft</em>
<em>=</em><em>></em><em> </em><em>volume</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>πr^</em><em>2</em><em>h</em><em>/</em><em>3</em>
<em>=</em><em>></em><em> </em><em>putting</em><em> the</em><em> value</em><em> of</em><em> </em><em>radius</em><em> and</em><em> height</em><em> </em>
<em>=</em><em>></em><em> </em><em> </em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>^</em><em>2</em><em>*</em><em>2</em><em>0</em><em>/</em><em>3</em><em>π</em>
<em>=</em><em>></em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>6</em><em>6</em><em>6</em><em>.</em><em>6</em><em>7</em><em>π</em><em> </em><em>.</em><em>ft^</em><em>3</em>
<em>hope</em><em> it</em><em> helps</em>
NOT MY WORDS TAKEN FROM A SOURCE!
(x^2) <64 => (x^2) -64 < 64-64 => (x^2) - 64 < 0 64= 8^2 so (x^2) - (8^2) < 0 To solve the inequality we first find the roots (values of x that make (x^2) - (8^2) = 0 ) Note that if we can express (x^2) - (y^2) as (x-y)* (x+y) You can work backwards and verify this is true. so let's set (x^2) - (8^2) equal to zero to find the roots: (x^2) - (8^2) = 0 => (x-8)*(x+8) = 0 if x-8 = 0 => x=8 and if x+8 = 0 => x=-8 So x= +/-8 are the roots of x^2) - (8^2)Now you need to pick any x values less than -8 (the smaller root) , one x value between -8 and +8 (the two roots), and one x value greater than 8 (the greater root) and see if the sign is positive or negative. 1) Let's pick -10 (which is smaller than -8). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive
2) Let's pick 0 (which is greater than -8, larger than 8). If x=0, then (x^2) - (8^2) = 0-64 = -64 <0 so it is negative3) Let's pick +10 (which is greater than 10). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive Since we are interested in (x^2) - 64 < 0, then x should be between -8 and positive 8. So -8<x<8 Note: If you choose any number outside this range for x, and square it it will be greater than 64 and so it is not valid.
Hope this helped!
:)