The answer is iii) decreasing the pressure of the system. When the pressure is decreased, the equilibrium will shift to the right because it has 12 moles of gas which is greater than the number of moles of gas on the left side, which is 6 moles. Equilibrium shifting to the side that exerts greater pressure is favored to offset the decrease in pressure.
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.
Filter flasks are
also known as vacuum, suction or the Buchner flasks. They have thick walls and also
have a short glass tube. The thick walls are designed to enable the filter withstand
high pressures of vacuum applied to filter substances. Generally this is used
for filtering.
While the Erlenmeyer flask
also called as a conical flask, is a titration flask which consists of a
conical body, a flat bottom, and round neck. This is used for used for general
uses such as mixing, titrations, preparation of cultures, for
recrystallization, and for supporting filter funnels.
<span>Lastly, the Volumetric flasks are graduated flasks which having markings
for different volumes. They are calibrated accurately for a specific amount of
liquid that can be contained in it hence this is specially used for storing
precise amounts of liquid. </span>
Answer:
Explanation:
The reaction between dimethyl malonate which is an active methylene group with an (∝, β-unsaturated carbonyl compound) i.e methyl vinyl ketone is known as a Micheal Addition reaction. The reaction mechanism starts with the base attack on the β-carbon to remove the acidic ∝-hydrogens and form a carbanion. The carbanion formed(enolate ion) attacks the methyl vinyl ketone(i.e. a nucleophilic attack at the β-carbon) to give a Micheal addition product, this is followed by the protonation to give the neutral product.
Data Given:
Time = t = 30.6 s
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 63.54/2 = 31.77 g
Amount Deposited = W = ?
Solution:
According to Faraday's Law,
W = I t e / F
Putting Values,
W = (10 A × 30.6 s × 31.77 g) ÷ 96500
W = 0.100 g
Result:
0.100 g of Cu²⁺ is deposited.