8(5) - 4y = 39
40 - 4y = 39
-4y = -1, y = 1/4
Solution: y = 1/4
Answer:
answer is 111
Step-by-step explanation:
Answer:
2x - 10 = 44 + 8x
7x - 4 = 20 =3x
2(x-3) = -20
15 - 4x + 5 = 32
Step-by-step explanation:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
2*x-10-(44+8*x)=0
Pull out like factors :
-6x - 54 = -6 • (x + 9)
-6 = 0
Solve : x+9 = 0
Subtract 9 from both sides of the equation :
x = -9
x = -9
Move all terms containing
x
to the left side of the equation.
4
x
−
4
=
20
Move all terms not containing
x
to the right side of the equation.
4
x
=
24
divide each term by 4
x = 6
2(x−3)=−20
Step 1: Simplify both sides of the equation.
2(x−3)=−20
2x−6=−20
Step 2: Add 6 to both sides.
2x−6+6=−20+6
2x=−14
Step 3: Divide both sides by 2.
2x
2
=
−14
2
x=−7
−4x+20=32
Step 2: Subtract 20 from both sides.
−4x+20−20=32−20
−4x=12
Step 3: Divide both sides by -4.
−4x
−4
=
12
−4
x=−3
The answer is 15
From the graph:
Car A traveled 60 miles in one hour
Car B traveled 75 miles in one hour.
Car B travels 15 more miles per hour
Step-by-step explanation:

In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2