Answer: x=(7√6)/2
Step-by-step explanation:
To find x, we would have to find the hypotenuse of the 45-45-90 triangle. First, we would have to find the hypotenuse by using the 30-60-90 triangle on top to find it.
For a 30-60-90 triangle, the hypotenuse is 2x in length. the x is the same in all sides. All you would have to do is to plug it in. The leg opposite of 60° is x√3 in length. the leg opposite of 30° is x in length.
Since we know that 7 is opposite of the 30° angle, we know that x is 7. Across fron 60° is the hypotenuse of the 45-45-90 triangle. That leg is x√3. We plug in x=7 and get 7√3.
The hypotenuse of the 45-45-90 triangle is x√2 and the legs are both x. We can set 7√3 equal to x√2 to find x of the missing side.
7√3=x√2 [divide both sides by √2]
x=(7√6)/2
Now, we know x=(7√6)/2.
Answer: ok so Let's simplify step-by-step.
r−3q+5p−(−4r−3q−8p)
Distribute the Negative Sign:
=r−3q+5p+−1(−4r−3q−8p)
=r+−3q+5p+−1(−4r)+−1(−3q)+−1(−8p)
=r+−3q+5p+4r+3q+8p
Combine Like Terms:
=r+−3q+5p+4r+3q+8p
=(5p+8p)+(−3q+3q)+(r+4r)
=13p+5r
Step-by-step explanation:
Answer:
249.42 units²
Step-by-step explanation:
Given only the apothem of an n-sided regular polygon, the area can be computed as ...
... A = n·a²·tan(180°/n)
For n=3 and a=4√3, this is ...
... A = 3·(4√3)²·tan(60°)
... A = 3·48·√3 = 144√3 . . . . units²
... A ≈ 249.42 units²
I believe the answer should be 6x+3
Answer:
La norma de los signos es para el producto de números reales, y la norma es la siguiente.
(+)*(+) = (+)
(+)*(-) = (-)
(-)*(+) = (-)
(-)*(-) = (+)
Es decir, el producto de dos números de mismo signo es siempre positivo
El producto de dos números de distinto signo es siempre negativo.
Particularmente, para la suma esta norma no funciona (pues no está definida para la suma)
Pero en casos como:
5 - (-4)
(esto sería: "la diferencia entre cinco y menos cuatro")
notar que podemos reescribir esto como:
5 + (-1)*(-4)
Ahora podemos aplicar la norma de los signos:
5 + 4 = 9
Donde aplicamos la norma de los signos,
Podemos concluir que, si bien es una regla que aplica al producto, siempre la tenemos que tener en cuenta en cualquier operación que hagamos.
Por lo podemos concluir que la respuesta correcta es verdadero.