Researcher
Military and airline forces
Teaching
Storm chaser
Environmental scientist
Answer:
7/6 or A
Step-by-step explanation:
2/3(9-6)-5/6= 7/6
![\bigstar\:{\underline{\sf{In\:right\:angled\:triangle\:ABC\::}}}\\\\](https://tex.z-dn.net/?f=%5Cbigstar%5C%3A%7B%5Cunderline%7B%5Csf%7BIn%5C%3Aright%5C%3Aangled%5C%3Atriangle%5C%3AABC%5C%3A%3A%7D%7D%7D%5C%5C%5C%5C)
⠀⠀⠀
![\bf{\dag}\:{\underline{\frak{By\:using\:Pythagoras\: Theorem,}}}\\\\](https://tex.z-dn.net/?f=%5Cbf%7B%5Cdag%7D%5C%3A%7B%5Cunderline%7B%5Cfrak%7BBy%5C%3Ausing%5C%3APythagoras%5C%3A%20Theorem%2C%7D%7D%7D%5C%5C%5C%5C)
![\star\:{\underline{\boxed{\frak{\purple{(Hypotenus)^2 = (Perpendicular)^2 + (Base)^2}}}}}\\\\\\ :\implies\sf (AB)^2 = (AC)^2 + (BC)^2\\\\\\ :\implies\sf (AB)^2 = (AB)^2 = (7)^2 = (4)^2\\\\\\ :\implies\sf (AB)^2 = 49 + 16\\\\\\ :\implies\sf (AB)^2 = 65\\\\\\ :\implies{\underline{\boxed{\pmb{\frak{AB = \sqrt{65}}}}}}\:\bigstar\\\\](https://tex.z-dn.net/?f=%5Cstar%5C%3A%7B%5Cunderline%7B%5Cboxed%7B%5Cfrak%7B%5Cpurple%7B%28Hypotenus%29%5E2%20%3D%20%28Perpendicular%29%5E2%20%2B%20%28Base%29%5E2%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%20%28AC%29%5E2%20%2B%20%28BC%29%5E2%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%20%28AB%29%5E2%20%3D%20%287%29%5E2%20%3D%20%284%29%5E2%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%2049%20%2B%2016%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%2065%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%7B%5Cunderline%7B%5Cboxed%7B%5Cpmb%7B%5Cfrak%7BAB%20%3D%20%5Csqrt%7B65%7D%7D%7D%7D%7D%7D%5C%3A%5Cbigstar%5C%5C%5C%5C)
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━
☆ Now Let's find value of sin A, cos A and tan A,
⠀⠀⠀
- sin A = Perpendicular/Hypotenus =
![\sf \dfrac{4}{\sqrt{65}} \times \dfrac{\sqrt{65}}{\sqrt{65}} = \pink{\dfrac{4 \sqrt{65}}{65}}](https://tex.z-dn.net/?f=%5Csf%20%5Cdfrac%7B4%7D%7B%5Csqrt%7B65%7D%7D%20%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B65%7D%7D%7B%5Csqrt%7B65%7D%7D%20%3D%20%5Cpink%7B%5Cdfrac%7B4%20%5Csqrt%7B65%7D%7D%7B65%7D%7D)
⠀⠀⠀
- cos A = Base/Hypotenus =
![\sf \dfrac{7}{\sqrt{65}} \times \dfrac{\sqrt{65}}{\sqrt{65}} = \pink{\dfrac{7 \sqrt{65}}{65}}](https://tex.z-dn.net/?f=%5Csf%20%5Cdfrac%7B7%7D%7B%5Csqrt%7B65%7D%7D%20%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B65%7D%7D%7B%5Csqrt%7B65%7D%7D%20%3D%20%5Cpink%7B%5Cdfrac%7B7%20%5Csqrt%7B65%7D%7D%7B65%7D%7D)
⠀⠀⠀
- tan A = Perpendicular/Base =
![{\sf{\pink{\dfrac{4}{7}}}}](https://tex.z-dn.net/?f=%7B%5Csf%7B%5Cpink%7B%5Cdfrac%7B4%7D%7B7%7D%7D%7D%7D)
⠀⠀⠀
![\therefore\:{\underline{\sf{Hence,\: {\pmb{Option\:A)}}\:{\sf{is\:correct}}.}}}](https://tex.z-dn.net/?f=%5Ctherefore%5C%3A%7B%5Cunderline%7B%5Csf%7BHence%2C%5C%3A%20%7B%5Cpmb%7BOption%5C%3AA%29%7D%7D%5C%3A%7B%5Csf%7Bis%5C%3Acorrect%7D%7D.%7D%7D%7D)
Cp=7512.75×[100÷(100+77÷4)]
=7512.75×(100÷119.25)
=6300
c.p=6300