Answer:
1. y = (⅔)x - 3
2. y = 3x + c
3. 1) non-proportional
2) can be proportional if c = 0
Step-by-step explanation:
1. What is the equation of a line that has a slope of ⅔ and a y-intercept of -3?
y = (⅔)x - 3
2. What is the equation of a line that has a slope of 3?
y = 3x + c
3. Lable the 2 equations as proportional or non-proportional and why.
A proportional relation should pass through the origin, i.e the y-intercept should be 0
Starts with 5 then adds 6 repeatedly
Answer:
![\sqrt[]{\frac{x+8}{4}}-3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3)
Step-by-step explanation:

First rewrite
as y

Now swap y and x

Add 8 on both sides.


Divide by 4.


Extract the square root on both sides.
![\sqrt[]{\frac{x+8}{4}}=\sqrt[]{(y+3)^2}](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D%3D%5Csqrt%5B%5D%7B%28y%2B3%29%5E2%7D)
![\sqrt[]{\frac{x+8}{4}}=y+3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D%3Dy%2B3)
Subtract 3 on both sides.
![\sqrt[]{\frac{x+8}{4}}-3=y+3-3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3%3Dy%2B3-3)
![\sqrt[]{\frac{x+8}{4}}-3=y](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3%3Dy)
To Euclid, a postulate is something that is so obvious it may be accepted without proof.
A. A straightedge and compass can be used to create any figure.
That's not Euclid, that's just goofy.
B. A straight line segment can be drawn between any two points.
That's Euclid's first postulate.
C. Any straight line segment can be extended indefinitely.
That's Euclid's second postulate.
D. The angles of a triangle always add up to 180.
That's true, but a theorem not a postulate. Euclid and the Greeks didn't really use degree angle measurements like we do. They didn't really trust them, I think justifiably. Euclid called 180 degrees "two right angles."
Answer: B C