Answer:
0.6 is the probability of success of a single trial of the experiment
Complete Problem Statement:
In a binomial experiment with 45 trials, the probability of more than 25 successes can be approximated by 
What is the probability of success of a single trial of this experiment?
Options:
Step-by-step explanation:
So to solve this, we need to use the binomial distribution. When using an approximation of a binomially distributed variable through normal distribution , we get:
=
now,

so,
by comparing with
, we get:
μ=np=27
=3.29
put np=27
we get:
=3.29
take square on both sides:
10.8241=27-27p
27p=27-10.8241
p=0.6
Which is the probability of success of a single trial of the experiment
10,500 mosquitos because 1,000•10hr=10,000 then half of a thousand is 500 so it's that
First start by subtracting 9x from both sides and getting 14=4x-10. Then add ten to both sides getting 24=4x. Then divide 24 by 4 and you get x=6
Answer:
Read step by step explanation
Step-by-step explanation:
The owner already knows that the limit for the average time delivered pizzas is 38 minutes. So we conclude
1.-The resulting mean from sample data ( x ) ( 27 customers) need to be smaller than 38 minutes, any value of sample above 38 minutes means more time for the delivery action and will indicate a failure for the future project
2.-As sample size is smaller than 30 the test has to be t-student one tail test to the left
Test hypothesis
Null hypothesis H₀ x = 38
Alternative hypothesis Hₐ x < 38
We should test at a significance level α = 0,05 (α = 5%)
If the result of the test is to accept H₀ delivery project won´t be implemented, if on the other hand, H₀ is rejected then in the condition of the alternative hypothesis we accept Hₐ the sample indicates that we have a smaller average time than 38 minutes.