For this case we have the following functions:

We must find the product of the functions:

We apply distributive property:

Finally, the product of the functions is:

Answer:

C. 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60
1,000: 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000
Now we find the common numbers. One doesn’t count as when multiplied later on, it will not change anything.
60: 2, 4, 5, 10, 20
1,000: 2, 4, 5, 10, 20
The highest common factor is 20 because it’s, well, the highest number.
D. Do the same thing for D.
24: 1, 2, 3, 4, 6, 8, 12, 24
880: 1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 880
20 and 880: 2, 4, 8
8 is the Highest Common Factor.
E. Do the same thing with E.
90: 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90
1,000: 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000
90 and 1000: 2, 5, 10
10 is the Highest Common Factor.
The area of a square is
s • s
We can also write this as
s^2
So, for any side length “s”, we can make a function, A(s), such that
A(s) = s^2
Now that we have a quadratic equation for the area of a square, let’s go ahead and solve for the side lengths of a square with a given area. In this case, 225 in^2
225 = s^2
Therefore,
s = sqrt(225)
s = 15
So, the dimensions are 15 x 15 in