The hyperbolic cos (cosh) is given by
cosh (x) = (e^x + e^-x) / 2
The slope of a tangent line to a function at a point is given by the derivative of that function at that point.
d/dx [cosh(x)] = d/dx[(e^x + e^-x) / 2] = (e^x - e^-x) / 2 = sinh(x)
Given that the slope is 2, thus
sinh(x) = 2
x = sinh^-1 (2) = 1.444
Therefore, the curve of y = cosh(x) has a slope of 2 at point x = 1.44
Answer:
there is a 26 out of 52 of a chance
Step-by-step explanation:
We have been provided a diagram which tells us that Patti drew vertical line segments from two points to the line in her scatter plot. The first point she selected was dwarf crocodile. The second point she selected was for an Indian Gharial crocodile.
We can see that dwarf crocodile's bite force is closer to line of best fit than Indian Gharial crocodile. Indian Gharial crocodile seems to be an outlier for our data set.
Therefore, Patti's line have resulted in a predicted bite force that was closer to actual bite force for the dwarf crocodile.