The skin is composed of thin membranous tissue that is quite permeable to water and contains a large network of blood vessels. The thin membranous skin is allows the respiratory gases to readily diffuse directly down their gradients between the blood vessels and the surroundings. When the frog is out of the water, mucus glands in the skin keep the frog moist, which helps absorb dissolved oxygen from the air.
A frog may also breathe much like a human, by taking air in through their nostrils and down into their lungs. The mechanism of taking air into the lungs is however sligthly different than in humans. Frogs do not have ribs nor a diaphragm, which in humans helps serve in expand the chest and thereby decreasing the pressure in the lungs allowing outside air to flow in.
In order to draw air into its mouth the frog lowers the floor of its mouth, which causes the throat to expand. Then the nostrils open allowing air to enter the enlarged mouth. The nostrils then close and the air in the mouth is forced into the lungs by contraction of the floor of the mouth. To elimate the carbon dioxide in the lungs the floor of the mouth moves down, drawing the air out of the lungs and into the mouth. Finally the nostrils are opened and the floor of the mouth moved up pushing the air out of the nostrils.
Frogs also have a respiratory surface on the lining of their mouth on which gas exchange takes place readily. While at rest, this process is their predominate form of breathing, only fills the lungs occasionally. This is because the lungs, which only adults have, are poorly developed.
<span>A) bacteria. Membrane-bound organelles are found in eukaryotic cells. However, bacteria are prokaryotic, meaning that they do not have membrane bound organelles.</span>
Explanation:
Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate (through the process of glycolysis in the cytoplasm).
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
Further Explanation:
In all eukaryotic cells, mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced.
Oxidative phosphorylation follows; this is a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm. 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
From nucleic acid to amino acid apex i think
Answer: I think its A.Harm