Answer:
<h3><ABC > <DBC.</h3>
Step-by-step explanation:
Given < DBC = < RST and we need to prove < ABC is greater than <RST.
First given statement:
< DBC = < RST
Reason: Given.
Second given statement :
<ABC = <DBC+ <ABD.
Reason: Angle addition theorem.
<em>Note: < ABC is the sum of angles <DBC and <ABD and we have < DBC = < RST. So it's an obvious thing that the sum of angles <DBC and <ABD is always greater than <RST.</em>
Also, <ABC is greater than <DBC.
Therefore, correct option for third statement is :
<h3><ABC > <DBC.</h3>
Answer:
2/3
Step-by-step explanation:
that the ratio of that number
We know that
If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment. (Intersecting Secant-Tangent Theorem)
so
ST²=RT*QT
RT=7 in
QT=23+7-----> 30 in
ST²=7*30-----> 210
ST=√210-----> 14.49 in
the answer is
RT=14.49 in
Answer:
The degrees of freedom is 11.
The proportion in a t-distribution less than -1.4 is 0.095.
Step-by-step explanation:
The complete question is:
Use a t-distribution to answer this question. Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution less than -1.4 if the samples have sizes 1 = 12 and n 2 = 12 . Enter the exact answer for the degrees of freedom and round your answer for the area to three decimal places. degrees of freedom = Enter your answer; degrees of freedom proportion = Enter your answer; proportion
Solution:
The information provided is:

Compute the degrees of freedom as follows:


Thus, the degrees of freedom is 11.
Compute the proportion in a t-distribution less than -1.4 as follows:


*Use a <em>t</em>-table.
Thus, the proportion in a t-distribution less than -1.4 is 0.095.