Answer:
The answer is below
Step-by-step explanation:
Let a complex z = r(cos θ + isinθ), the nth root of the complex number is given as:

Given the complex number z = 81(cos(3π/8)+isin(3π/8)), the fourth root (i.e n = 4) is given as follows:
![z_{k=0}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(0)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(0)\pi}{4} ))=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})] \\z_{k=0}=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})]\\\\z_{k=1}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(1)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(1)\pi}{4} ))=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})] \\z_{k=1}=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})]\\\\](https://tex.z-dn.net/?f=z_%7Bk%3D0%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D0%7D%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D1%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D1%7D%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5C)
![z_{k=2}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(2)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(2)\pi}{4} ))=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})] \\z_{k=2}=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})]\\\\z_{k=3}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(3)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(3)\pi}{4} ))=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})] \\z_{k=3}=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})]](https://tex.z-dn.net/?f=z_%7Bk%3D2%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D2%7D%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D3%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D3%7D%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D)
Answer:
x= 22.5°
Step-by-step explanation:
∠DEA= ∠BAE (alt. ∠s, DE// AB)
Substitute ∠DEA= 2x:
∠BAE= 2x
∠AEB +∠BEF= 180° (adj. ∠s on a str. line)
Substitute ∠BEF= 4x:
∠AEB +4x= 180°
∠AEB= 180° -4x
∠ABE +∠CBE= 180° (adj. ∠s on a str. line)
Substitute ∠CBE= 6x:
∠ABE +6x= 180°
∠ABE= 180° -6x
∠BAE +∠AEB +∠ABE= 180° (∠ sum of triangle)
2x +180° -4x +180° -6x= 180°
-8x +360°= 180°
8x= 360° -180°
8x= 180°
x= 180° ÷8
x= 22.5°
Answer: 122
Step-by-step explanation: Substitute the values of <em>x</em> and <em>y</em> into the expression.

"Fill in the blanks" with the numbers given for <em>x</em> and <em>y</em>.

Simple....

x<6
This means that on your graph at 6 it's a circle (not colored in) and it goes to the left indefinitely...
Thus, your answer.
Take 3.27 and divide that by 1.09 (for the oranges)
3.27/1.09=3lbs. of oranges
then take 4.76 and divide that by 1.19 (for the pears)
4.76/1.19=4lbs. of pears
add 4+3 to get how many lbs. in all
4+3=7