A
x=y^2-9
x+9=y^2
square root both sides
+-sqrt(x+9)
5/4
The slope is answers the x
Answer:
No, these triangles cannot lie on the same line.
Step-by-step explanation:
For two triangles to lie on the same line they must have the same slope.
The slope of the bigger triangle is

and the slope of the smaller triangle is

slopes are negative because the triangles are leaning to the left.
We see that the slopes of the two triangles are not the same; therefore, they cannot lie on the same line.
Answer:
a. a = 1, b = -5, c = -14
b. a = 1, b = -6, c = 9
c. a = -1, b = -1, c = -3
d. a = 1, b = 0, c = -1
e. a = 1, b = 0, c = -3
Step-by-step explanation:
a. x-ints at 7 and -2
this means that our quadratic equation must factor to:

FOIL:

Simplify:

a = 1, b = -5, c = -14
b. one x-int at 3
this means that the equation will factor to:

FOIL:

Simplify:

a = 1, b = -6, c = 9
c. no x-int and negative y must be less than 0
This means that our vertex must be below the x-axis and our parabola must point down
There are many equations for this, but one could be:

a = -1, b = -1, c = -3
d. one positive x-int, one negative x-int
We can use any x-intercepts, so let's just use -1 and 1
The equation will factor to:

This is a perfect square
FOIL:

a = 1, b = 0, c = -1
e. x-int at 
our equation will factor to:

This is also a perfect square
FOIL and you will get:

a = 1, b = 0, c = -3