Answer:
$9500
Step-by-step explanation:
Given, Option A: Hourly wage is $19 and the salesperson works 40 hours per week. So, he will earn in a week= 19 X 40 = $760
Now, according to option b, he will get 8% commission on weekly sales.
Let. x = the amount of weekly sales.
To earn the same amount of option A, he will have to equal the 8% of x to $760
So, 8x/100= 760
Or, 8x= 76000
Or, x= 76000/8= 9,500
the salesman needs to make a weekly sales of $9,500 to earn the same amount with two options.
Answer:
k=|14+x|-5
Step-by-step explanation:
just rewrite the equation as k=|14+x|-5
Answer:
20 miles
Step-by-step explanation:
the answer is 20 miles
Part A. You have the correct first and second derivative.
---------------------------------------------------------------------
Part B. You'll need to be more specific. What I would do is show how the quantity (-2x+1)^4 is always nonnegative. This is because x^4 = (x^2)^2 is always nonnegative. So (-2x+1)^4 >= 0. The coefficient -10a is either positive or negative depending on the value of 'a'. If a > 0, then -10a is negative. Making h ' (x) negative. So in this case, h(x) is monotonically decreasing always. On the flip side, if a < 0, then h ' (x) is monotonically increasing as h ' (x) is positive.
-------------------------------------------------------------
Part C. What this is saying is basically "if we change 'a' and/or 'b', then the extrema will NOT change". So is that the case? Let's find out
To find the relative extrema, aka local extrema, we plug in h ' (x) = 0
h ' (x) = -10a(-2x+1)^4
0 = -10a(-2x+1)^4
so either
-10a = 0 or (-2x+1)^4 = 0
The first part is all we care about. Solving for 'a' gets us a = 0.
But there's a problem. It's clearly stated that 'a' is nonzero. So in any other case, the value of 'a' doesn't lead to altering the path in terms of finding the extrema. We'll focus on solving (-2x+1)^4 = 0 for x. Also, the parameter b is nowhere to be found in h ' (x) so that's out as well.
Answer:
I believe the answer is neither
Step-by-step explanation: