1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
9

What else would need to be congruent to show that AABC=A DEF by the

Mathematics
1 answer:
Pepsi [2]3 years ago
7 0

Answer:

D. AC ≅ DF

Step-by-step explanation:

According to the AAS Theorem, two triangles are considered congruent to each other when two angles and a mon-included side of one triangle are congruent to two corresponding angles and a corresponding non-included side of the other.

Thus, in the diagram given:

<A and <B in ∆ABC are congruent to corresponding angles <D and <E in ∆DEF.

The only condition left to be met before we can conclude that both triangles are congruent by the AAS Theorem is for a mon-included side AC to be congruent to corresponding non-included side DF.

So, AC ≅ DF is what is needed to make both triangles congruent.

You might be interested in
A cubic inch of water weighs 0.036 pound. Which of the following rational numbers is equal to the weight of a cubic inch of wate
aniked [119]
If I were you I will think the answer is B
3 0
2 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Will a frying pan with a circumference of 25.12 inches fit on an electric burner with a 4-inch radius?
Leokris [45]

Answer:

Yes

Step-by-step explanation:

25.12 inches of circumference is equal to the radius of 3.998 inches

4 inches > 3.998 inches

Therefore it fits


8 0
3 years ago
What is 5/6 - blank equal 1/2
mel-nik [20]

Answer:

1/3

Step-by-step explanation:

5/6-x=1/2

x=5/6-1/2

x=5/6-3/6

x=2/6

simplify

x=1/3

8 0
3 years ago
Read 2 more answers
A circle's circumference is approximately 44 cm.
Sav [38]
<h3>Answers</h3><h3>diameter = 14</h3><h3>radius = 7</h3><h3>area = 154</h3>

these are all approximate

======================================

Explanation:

C = pi*d is the formula for the circumference. We know that C = 44 approximately, so,

C = pi*d

d = C/pi

d = 44/3.14

d = 14.01 approximately

d = 14 also approximate

take half of this to get the radius

r = d/2 = 14/2 = 7

Then use this radius to find the circle's area

A = pi*r^2

A = 3.14*7^2

A = 153.86

A = 154  rounding to the nearest whole number

7 0
3 years ago
Other questions:
  • Sharon brought fabric to make costumes.
    8·1 answer
  • Need math genius.Forgot to post question Lol.But help plz​
    12·2 answers
  • Find the length of side AC.<br> Give your answer to 1 decimal place.<br> 68<br> A<br> 7 cm
    5·1 answer
  • 8x+4(4x-3)=4(6x+4)-4
    6·1 answer
  • (15 Points)
    11·2 answers
  • If the ratio of the surface areas of two similar geometrical solids is given by 121:36, what is the
    14·1 answer
  • 11. Ben is saving money to buy a TV that costs $495,
    5·1 answer
  • PLEASE HELP!!Find the missing side length in the triangle below??
    14·1 answer
  • Need quick help with this math
    7·2 answers
  • URGENT!! <br><br> Please divide this polynomial
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!