Answer:
The correct answer is an event occurring one or fewer times in 100 times if the null hypothesis is true.
Step-by-step explanation:
For a statistically rare event, its probability is relatively small and the event is very unlikely to occur. Therefore, if an experimental sets equal to 0.01 which is statistically rare, then we can interpret this mathematically as:
p(event) = 0.01 = 1/100
where p(event) is the probability of the event.
In addition, statistically, null hypothesis signifies no major difference between the specified parameters, and any obvious difference that might occur as a result of experimental error. Thus, it can be concluded that the event is occurring one or fewer times in 100 times if the null hypothesis is true.
The answer would be the first one
Answer with Step-by-step explanation:
Independent:Tickets,Shopping list,weight,Hiking,Mushrooms in the bridge,Number of trophies
Dependent:Money,Shopping bas,price of customer's order,snacks,mushroom tarts, shelves on the case
7, 5, 1, 6, 2 Mean Absolute Deviation = 2.16
3, 6, 3, 2, 1 Mean Absolute Deviation = 1.2
Answer:
69.5%
Step-by-step explanation:
A feature of the normal distribution is that this is completely determined by its mean and standard deviation, therefore, if two normal curves have the same mean and standard deviation we can be sure that they are the same normal curve. Then, the probability of getting a value of the normally distributed variable between 6 and 8 is 0.695. In practice we can say that if we get a large sample of observations of the variable, then, the percentage of all possible observations of the variable that lie between 6 and 8 is 100(0.695)% = 69.5%.