Okay here's an example so if we have 2, 3/2*1/2 we convert the mixed numbers to improper fractions. So in order to solve a mixed number you add the denominator, numerator and whole to get 7/2*1.2
So Multiple
7/2*1/2
Refine the fractions
7/2*2
Multiple the numbers 2*2=4 to get
7/4
and that equals 1, 3/4
Answer:
3) ![y=\dfrac35x+\dfrac25](https://tex.z-dn.net/?f=y%3D%5Cdfrac35x%2B%5Cdfrac25)
4) a) ![y=-2x+7](https://tex.z-dn.net/?f=y%3D-2x%2B7)
b) ![y=\dfrac12x+\dfrac92](https://tex.z-dn.net/?f=y%3D%5Cdfrac12x%2B%5Cdfrac92)
Step-by-step explanation:
<u>Exercise 3</u>
![-3x + 5y = 2](https://tex.z-dn.net/?f=-3x%20%2B%205y%20%3D%202)
![\implies 5y = 3x + 2](https://tex.z-dn.net/?f=%5Cimplies%205y%20%3D%203x%20%2B%202)
![\implies y=\dfrac35x+\dfrac25](https://tex.z-dn.net/?f=%5Cimplies%20y%3D%5Cdfrac35x%2B%5Cdfrac25)
<u>Exercise 4</u>
a) If L2 is parallel to L1, it has the same slope (gradient) ⇒ ![m = -2](https://tex.z-dn.net/?f=m%20%3D%20-2)
If L2 passes through point (3, 1):
![y-y_1=m(x-x_1)](https://tex.z-dn.net/?f=y-y_1%3Dm%28x-x_1%29)
![\implies y-1=-2(x-3)](https://tex.z-dn.net/?f=%5Cimplies%20y-1%3D-2%28x-3%29)
![\implies y=-2x+7](https://tex.z-dn.net/?f=%5Cimplies%20y%3D-2x%2B7)
So L2 = L1
b) If L3 is perpendicular to L1, then the slope of L3 is the negative reciprocals of the slope of L1 ⇒ ![m = \dfrac12](https://tex.z-dn.net/?f=m%20%3D%20%5Cdfrac12)
If L3 passes through point (-5, 2):
![y-y_1=m(x-x_1)](https://tex.z-dn.net/?f=y-y_1%3Dm%28x-x_1%29)
![\implies y-2=\dfrac12(x+5)](https://tex.z-dn.net/?f=%5Cimplies%20y-2%3D%5Cdfrac12%28x%2B5%29)
![\implies y=\dfrac12x+\dfrac92](https://tex.z-dn.net/?f=%5Cimplies%20y%3D%5Cdfrac12x%2B%5Cdfrac92)
Answer:
-3/2=slope
y-int = (0,1)
Equation= Y=-3/2x+1
Step-by-step explanation:
x+x+y.y.y = 2x+y^3 ( y cube)
So, The answer is (d)