The product of two rational numbers is always rational because (ac/bd) is the ratio of two integers, making it a rational number.
We need to prove that the product of two rational numbers is always rational. A rational number is a number that can be stated as the quotient or fraction of two integers : a numerator and a non-zero denominator.
Let us consider two rational numbers, a/b and c/d. The variables "a", "b", "c", and "d" all represent integers. The denominators "b" and "d" are non-zero. Let the product of these two rational numbers be represented by "P".
P = (a/b)×(c/d)
P = (a×c)/(b×d)
The numerator is again an integer. The denominator is also a non-zero integer. Hence, the product is a rational number.
learn more about of rational numbers here
brainly.com/question/29407966
#SPJ4
we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
<h3>
Answer: x = 45</h3>
Work Shown:
x+x+90 = 180 .... all three angles of a triangle add to 180
2x+90 = 180
2x = 180-90
2x = 90
x = 90/2
x = 45
This is a 45-45-90 right triangle. We also consider it an isosceles right triangle because the base angles (45) are equal.
The number can be separated into 35+0.125
0.125 can be rewritten as,

So, the number can be rewritten;
35+

35