Answer:
After reflection over the x-axis, we have the coordinates as follows;
A’ (5,-2)
B’ ( 1,-2)
C’ (3,-6)
Step-by-step explanation:
Here, we want to find the coordinates A’ B’ and C’ after a reflection over the x-axis
By reflecting over the x-axis, the y-coordinate is bound to change in sign
So if we have a Point (x,y) and we reflect over the x-axis, the image of the point after reflection would turn to (x,-y)
We simply go on to negate the value of the y-coordinate
Mathematically if we apply these to the given points, what we get are the following;
A’ (5,-2)
B’ ( 1,-2)
C’ (3,-6)
Answer: x-int = 10 and y-int = -12
Explanation:
Find x intercept:
To find x intercept set y = 0
3x - 2.5(0) = 30
3x = 30
x = 10
Find y-int:
Set x = 0
3(0) - 2.5y = 30
-2.5y = 30
y = 30/-2.5
y = -12
Answer:
(2,4)
Step-by-step explanation:
Answer:
x = - 1, x = 
Step-by-step explanation:
Given
8x² + 7x - 1 = 0 ← in standard form
Consider the factors of the product of the x² term and the constant term which sum to give the coefficient of the x- term
product = 8 × - 1 = - 8 and sum = + 7
The factors are + 8 and - 1
Use these factors to split the x- term
8x² + 8x - x - 1 = 0 ( factor the first/second and third/fourth terms )
8x(x + 1) - 1(x + 1) = 0 ← factor out (x + 1) from each term
(x + 1)(8x - 1) = 0
Equate each factor to zero and solve for x
x + 1 = 0 ⇒ x = - 1
8x - 1 = 0 ⇒ 8x = 1 ⇒ x = 