<u>Correct</u><u> </u><u>question</u><u>:</u><u>-</u>
<u>Prove </u><u>that </u><u>tan9.</u><u>t</u><u>a</u><u>n</u><u>1</u><u>7</u><u>.</u><u>t</u><u>a</u><u>n</u><u>4</u><u>5</u><u>.</u><u>t</u><u>a</u><u>n</u><u>7</u><u>3</u><u>.</u><u>t</u><u>a</u><u>n</u><u>8</u><u>1</u><u>=</u><u>1</u>
<u>LHS</u>
9 it’s the only one single digit number and each number has a 2 digit number or higher
8.5b.
7a= 5a +3b
-5a -5a
2a = 3b
/2
a= 1.5b
Solve by substitution and you get;
8.5b=8.5b
Because of the lack of constants in the equation there isn't a definite answer.
The first digit can be any one of the numbers 2-9 That a total of 8 numbers.
The next 6 digits can be any permutation of 6 from the numbers 0 to 9.
(10 numbers)
nPr = n! / r!
so here we have 10P6 = 10! / 6! = 10*9*8*7 = 5040
So final answer is 8 * 5040 = 40,320
9x135 = 1,215
10x135 = 1,350
11x135 = 1,485
Therefore, your answer would be 10.