Answer:
1) $283.50
2) 65.21 meters.
Step-by-step explanation:
Part 1)
We know that a spool of ribbon holds 6.75 meters.
A craft club buys 21 spools.
So, the total length of ribbon bought is:
![T=21(6.75)=141.75\text{ meters}](https://tex.z-dn.net/?f=T%3D21%286.75%29%3D141.75%5Ctext%7B%20meters%7D)
Each meter costs $2. So, the total cost will be:
![141.75(2)=\$ 283.50](https://tex.z-dn.net/?f=141.75%282%29%3D%5C%24%20283.50)
Part 2)
A spool holds 6.75 meters.
We bought 21 of them, so that total length we have is 141.75 meters.
The club used 76.54 meters.
So, the amount of ribbon that is left is represented by:
![141.75-76.54](https://tex.z-dn.net/?f=141.75-76.54)
Subtract:
![=65.21\text{ meters}](https://tex.z-dn.net/?f=%3D65.21%5Ctext%7B%20meters%7D)
So, 65.21 meters of ribbon will be left.
Answer:
![P(A) = \frac{30}{100}](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%5Cfrac%7B30%7D%7B100%7D)
![P(B) = \frac{77}{100}](https://tex.z-dn.net/?f=P%28B%29%20%3D%20%5Cfrac%7B77%7D%7B100%7D)
![P(A\ n\ B) = \frac{22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20n%5C%20B%29%20%3D%20%5Cfrac%7B22%7D%7B100%7D)
![P(A\ u\ B) = \frac{85}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B85%7D%7B100%7D)
Step-by-step explanation:
Given
See attachment for proper format of table
--- Sample
A = Supplier 1
B = Conforms to specification
Solving (a): P(A)
Here, we only consider data in sample 1 row.
In this row:
and ![No = 8](https://tex.z-dn.net/?f=No%20%3D%208)
So, we have:
![n(A) = Yes + No](https://tex.z-dn.net/?f=n%28A%29%20%3D%20Yes%20%2B%20No)
![n(A) = 22 + 8](https://tex.z-dn.net/?f=n%28A%29%20%3D%2022%20%2B%208)
![n(A) = 30](https://tex.z-dn.net/?f=n%28A%29%20%3D%2030)
P(A) is then calculated as:
![P(A) = \frac{n(A)}{Sample}](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%5Cfrac%7Bn%28A%29%7D%7BSample%7D)
![P(A) = \frac{30}{100}](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%5Cfrac%7B30%7D%7B100%7D)
Solving (b): P(B)
Here, we only consider data in the Yes column.
In this column:
and ![(3) = 30](https://tex.z-dn.net/?f=%283%29%20%3D%2030)
So, we have:
![n(B) = (1) + (2) + (3)](https://tex.z-dn.net/?f=n%28B%29%20%3D%20%281%29%20%2B%20%282%29%20%2B%20%283%29)
![n(B) = 22 + 25 + 30](https://tex.z-dn.net/?f=n%28B%29%20%3D%2022%20%2B%2025%20%2B%2030)
![n(B) = 77](https://tex.z-dn.net/?f=n%28B%29%20%3D%2077)
P(B) is then calculated as:
![P(B) = \frac{n(B)}{Sample}](https://tex.z-dn.net/?f=P%28B%29%20%3D%20%5Cfrac%7Bn%28B%29%7D%7BSample%7D)
![P(B) = \frac{77}{100}](https://tex.z-dn.net/?f=P%28B%29%20%3D%20%5Cfrac%7B77%7D%7B100%7D)
Solving (c): P(A n B)
Here, we only consider the similar cell in the yes column and sample 1 row.
This cell is: [Supplier 1][Yes]
And it is represented with; n(A n B)
So, we have:
![n(A\ n\ B) = 22](https://tex.z-dn.net/?f=n%28A%5C%20n%5C%20B%29%20%3D%2022)
The probability is then calculated as:
![P(A\ n\ B) = \frac{n(A\ n\ B)}{Sample}](https://tex.z-dn.net/?f=P%28A%5C%20n%5C%20B%29%20%3D%20%5Cfrac%7Bn%28A%5C%20n%5C%20B%29%7D%7BSample%7D)
![P(A\ n\ B) = \frac{22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20n%5C%20B%29%20%3D%20%5Cfrac%7B22%7D%7B100%7D)
Solving (d): P(A u B)
This is calculated as:
![P(A\ u\ B) = P(A) + P(B) - P(A\ n\ B)](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20P%28A%29%20%2B%20P%28B%29%20-%20P%28A%5C%20n%5C%20B%29)
This gives:
![P(A\ u\ B) = \frac{30}{100} + \frac{77}{100} - \frac{22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B30%7D%7B100%7D%20%2B%20%5Cfrac%7B77%7D%7B100%7D%20-%20%5Cfrac%7B22%7D%7B100%7D)
Take LCM
![P(A\ u\ B) = \frac{30+77-22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B30%2B77-22%7D%7B100%7D)
![P(A\ u\ B) = \frac{85}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B85%7D%7B100%7D)
Area of a square = L * L
As you know 17 * 17 = 289
So length of one side of square equals 17
The ratio between the masses of Jupiter and Venus is
![\dfrac{1.989\cdot 10^{30}}{4.869\cdot 10^{27}}](https://tex.z-dn.net/?f=%5Cdfrac%7B1.989%5Ccdot%2010%5E%7B30%7D%7D%7B4.869%5Ccdot%2010%5E%7B27%7D%7D)
We can separate the coefficient and the powers of ten:
![\dfrac{1.989\cdot 10^{30}}{4.869\cdot 10^{27}}=\dfrac{1.989}{4.869}\cdot \dfrac{10^{30}}{10^{27}}](https://tex.z-dn.net/?f=%5Cdfrac%7B1.989%5Ccdot%2010%5E%7B30%7D%7D%7B4.869%5Ccdot%2010%5E%7B27%7D%7D%3D%5Cdfrac%7B1.989%7D%7B4.869%7D%5Ccdot%20%5Cdfrac%7B10%5E%7B30%7D%7D%7B10%5E%7B27%7D%7D)
Use the exponent rule
![\dfrac{a^b}{a^c}=a^{b-c}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%5Eb%7D%7Ba%5Ec%7D%3Da%5E%7Bb-c%7D)
to simplify the powers of 10:
![\dfrac{10^{30}}{10^{27}}=10^3](https://tex.z-dn.net/?f=%5Cdfrac%7B10%5E%7B30%7D%7D%7B10%5E%7B27%7D%7D%3D10%5E3)
So, the ratio is
![\dfrac{1.989}{4.869}\cdot 10^3\approx 0.4\cdot 10^3=400](https://tex.z-dn.net/?f=%5Cdfrac%7B1.989%7D%7B4.869%7D%5Ccdot%2010%5E3%5Capprox%200.4%5Ccdot%2010%5E3%3D400)
So, Jupiter has a mass that is approximately 400 times greater than Venus's.