Answer:
B
Explanation:
The deletion of a single base is the mutation that would most likely impair the production of a protein, because each aminoacid is coded by a triplet of three base pairs. So when one of the bases is deleted, the whole series of triplets is altered so the whole series of aminoacids in the protein would now be different.
Answer:
The corpus callosum
Explanation:
The corpus callosum is the largest white matter structure in the brain. It is located beneath the cerebral cortex and it connects the left and right cerebral hemispheres thus enabling communication between them. The corpus callosum is a bundle of nerve fibers, (axon projections) which transmits neural signals.
Answer:
Thiamine pyrophosphate (derived from vitamin B1) is a coenzyme required for the activity of pyruvate dehydrogenase enzyme complex.
Explanation:
Pyruvate is the end product of glycolysis. During aerobic cellular respiration, pyruvate is oxidatively decarboxylated into acetyl CoA which in turn enters the Kreb's cycle. Oxidative decarboxylation of pyruvate is carried out by enzyme complex pyruvate dehydrogenase (PDH). The first step is simple decarboxylation and is catalyzed by pyruvate decarboxylase of the PDH complex.
The enzyme pyruvate decarboxylase and has a tightly bound coenzyme, thiamine pyrophosphate. Thiamine pyrophosphate is derived from vitamin B1. Lack of vitamin B1 in the human diet leads to beriberi that is characterized by an increased concentration of pyruvate in blood urine since oxidative decarboxylation cannot occur due to lack of the coenzyme thiamine pyrophosphate.