Answer:
The symphonic choir can record a maximum of 14 songs.
Step-by-step explanation:
We know that the album cannot be more than 72 minutes long, and the jazz choir records a total of
song minutes.
If we call
the number of songs the symphonic choir records , and each song is 3.5 minute long, then the song minutes for the symphonic choir are
; therefore, we have the inequality
<em> (this says the song minutes for jazz choir plus song minutes for symphonic choice cannot exceed 72 minutes )</em>
We solve this inequality by subtracting 21 from both sides and then dividing by 3.5:



The maximum integer value
can take is 14; therefore, the maximum number of songs the symphonic choir can record is 14 songs.
9514 1404 393
Answer:
(x, y, z) = (-1, 0, -3)
Step-by-step explanation:
We notice that the coefficients of z are such that elimination of the z term from the equations is made easy.
Adding equations 1 and 2:
(2x -3y -2z) +(x +3y +2z) = (4) +(-7)
3x = -3
x = -1
Adding equations 2 and 3:
(x +3y +2z) +(-4x -4y -2z) = (-7) +(10)
-3x -y = 3
Substituting for x, we get ...
(-3)(-1) -y = 3
0 = y . . . . . . . . . . . add y-3 to both sides
Then z can be found from any equation. Substituting for x and y in the second equation gives ...
-1 +2z = -7
2z = -6 . . . . . add 1
z = -3 . . . . . .divide by 2
The solution is (x, y, z) = (-1, 0, -3).
Answer:
90 m
Step-by-step explanation:
65 km = 65000m
1 hour = 3600 secs
speed in meters = 65000/3600
= 18 m / sec
Distance traveled in 5 secs = 18*5
= 90 m
These problems are called systems of equations. Basically you have two linear equations and you need to find the values for x and y. In other words, all these equation are lines and our answer will be the exact point that the pair of lines intersect. For example, if we get x=1 and y=2 the lines will intersect at point (1,2). Now that you have some background knowledge here comes the tricks and tactics kid.
We know that we can solve one variable equation easily. For example...
x+1=2
x=1 obviously
Cause we have two variables x and y it is not possible to find a solution. For example, in the equation x+y=10, x=1 when y=9 and x=2 when y=8. There is not correct answer.
So what can we do? We have to make a two variable equation into a one variable equation.
There are two ways to do this: substitution and elimination. I will create a sample problem and then solve it using both methods.
x+y=2
2y-y=1
3)
-3x-5y=-7 -----> -12x-20y=-28
-4x-3y=-2 ------> -12x-9y=-6
-12x-20y=-28
-(-12x-9y=-6)
---------------------
-11y=-22
y=2
-3x-5(2)=-7
-3x=3
x=-1
4) 8x+4y=12 ---> 24x+12y=36
7x+3y=10 ---> 28x+12y=40
28x+12y=40
-(24x+12y=36)
---------------------
4x=4
x=1
8(1)+4y=12
4y=4
y=1
5) 4x+3y=-7
-2x-5y=7 ----> -4x-10y=14
4x+3y=-7
+(-4x-10y=14)
-------------------
-7y=7
y=-1
4x+3(-1)=-7
4x=-4
x=-1
6) 8x-3y=-9 ---> 32x-12y=-36
5x+4y=12 ---> 15x+12y=36
32x-12y=-36
+(15x+12y=36)
--------------------
47x=0
x=0
8(0)-3y=-9
-3y=-9
y=3
7)-3x+5y=-2
2x-2y=1 ---> x-y=1/2 ----> x=y+1/2
-3(y+1/2)+5y=-2
-3y-1.5+5y=-2
2y=-0.5
y=0.25
2x-2(0.25)=1
2x=1.5
x=0.75
The rule for rotation 90 degrees clockwise is (x,y)->(y,-x).
So your answer will be:
A’(4,-2)