In the initial number xx7,xxx; 7 is in the thousands place meaning its value is 7,000.
If it is moved to the tens place = xxx,x7x then it's value will decrease, it will become 70 only.
Every placement has its corresponding values, thus whereven the number 7 is place it is multiplied by its corresponding values (ones, tens, hundreds, etc).
Answer:
D: Inflation
money loses value over time because there may be new laws or regulations that will make the value change i think thats part of it but it is D
Answer:
h(x) * s(x) = 200(1.05)^(x - 1)
Step-by-step explanation:
Our interest equation is s(x) = (1.05)^(x - 1). This is actually a part of a bigger formula for calculating the amount of money accumulated including interest:
A = P(1 + r)^n, where A is the total, P is the principal amount (initial amount), r is the interest rate, and n is the time
Here, we technically already have the (1 + r)^n part; it's just (1.05)^(x - 1). The principle, though, will actually be the 200 because she starts out at $200.
Thus, to combine these, we simply multiply them together to get:
h(x) * s(x) = 200(1.05)^(x - 1)
Answer:
c. g(x) = 4x^2
Step-by-step explanation:
From a first glance, since g(x), is skinnier than f(x), meaning that it is increasing faster, so I know that I can eliminate options A & B since the coefficient on x needs to be greater than 1.
We can then look and see that g(1) = 4 as shown by the point given to us on the graph.
To find the right answer we can find g(1) for options C & D and whichever one matches the point on the graph is our correct answer. e
Option C:
once we plug in 1 for x, our equation looks like
4(1)^2.
1^2 = 1, and 4(1) = 4,
so g(1) = 4. and our point is (1,4).
This is the same as the graph so this is the CORRECT answer.
If you want to double check, you can still find g(1) for option D and verify that it is the WRONG answer.
Option D:
once we plug in 1 for x, our equation looks like
16(1)^2
1^2 = 1, and 16(1) = 16,
so g(1) = 16. and our point is (1,16).
This is different than the graph so this is the WRONG answer.