My day was good!! Thank you so much for asking :)
┈┈╭━╱▔▔▔▔╲━╮┈┈┈
┈┈╰╱╭▅╮╭▅╮╲╯┈┈┈
╳┈┈▏╰┈▅▅┈╯▕┈┈┈┈
┈┈┈╲┈╰━━╯┈╱┈┈╳┈
┈┈┈╱╱▔╲╱▔╲╲┈┈┈┈
┈╭━╮▔▏┊┊▕▔╭━╮┈╳
┈┃┊┣▔╲┊┊╱▔┫┊┃
Answer:
I think its iron(II) oxide
Explanation:
The substance is black but when it's mixed with water it turns green solution so when mixed with sodium Hydroxide it turns green
Answer: 
Explanation:Bond energy of H-H is 436.4 kJ/mole
Bond energy of C-H is 414 kJ/mol
Bond energy of C=C is 620 kJ/mol
Bond energy of C≡C is 835 kJ/mol

= {1B.E(C≡C)+2B.E(C-H) +1B.E(H-H)} - {1B.E(C=C)+4B.E(C-H)}


The number following the name of the element is the number of subatomic particles inside the nucleus of the atom. This means that it is the mass number of the isotope. The average atomic mass of the element is the sum of the products of the percentage abundance and mass number of the naturally occurring isotopes.
Since, the average atomic mass of the hydrogen is nearest to 1 then, the most abundant isotope should be hydrogen-1.
Answer:
The different structures are shown in the attachment.
I and II - structural isomers
I and III - Structural isomers
I and IV - structural isomers
II and III - structural isomers
II and IV - structural isomers
III and IV - stereoisomers
Explanation:
The knowledge of Isomerism is tested here; there are two types of isomerism ; structural and stereoisomerism.
- Structural Isomers have similar molecular and different double bond positioning, these occurs mostly in ALKENE FAMILY.
- Stereo-isomers have the same molecular formular and similar patterns but differ in their spatial arrangement. trans and cis are typical examples of stereo-isomers.
From the question; Relationship between I and II is that they are structural isomers since they have the same molecular formula, but different bond atom arrangement and infact they are the same compound.
- Relationship between I and III is that they are structural isomers with similar molecular formular but differ in the double bond position.
- Relationship between I and IV is that they are structural isomers with similar molecular formula but different double bond arrangement.
- Relationship between II and III is that they are structural isomers with similar molecular formular but different double bond position
- Relationship between II and IV is that they are also structural isomers with the same molecular formular but different double bond position.
- Relationship between III and IV is that they are stereo-isomers with same molecular formula but different spatial arrangement, hence cis and trans.