I believe the correct answer from the choices listed above is the first option. <span>A blimp flying around over the Super Bowl has both kinetic and potential energy. It initially posses potential energy then as it moves te said energy is converted to kinetic energy. Hope this answers the question.
</span>
Answer:
678.2 km/h and 80.54° north of east
Explanation:
From the question,
Using pythagoras theorem,
a² = b²+c²..................... Equation 1
Where a = resultant velocity
Given: b = 600 km/h, c = 100 km/h
Substitute these values into equation 1
R² = 600²+100²
R² = 360000+10000
R² = 460000
R = √460000
R = 678.2 km/h.
And the direction is
tanθ = 600/100
tanθ = 6
tanθ = 6
θ = tan⁻¹(6)
θ = 80.54°.
Hence the resultant velocity of the aircraft is 678.2 km/h and 80.54° north of east
Answer:
frequency = 5.52 * 10² Hz
Explanation:
the equation that relates velocity, frequency and wavelength is:
velocity = frequency * wavelength
We are given that:
velocity = 331 m/sec
wavelength = 0.6 m
Substitute with the givens in the equation to get the frequency as follows:
velocity = frequency * wavelength
331 = frequency * 0.6
frequency = 331 / 0.6
frequency = 5.52 * 10² Hz
Hope this helps :)
It is said to be concave
and convex is the one reflecting outward
Explain what we need to do ?